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2. Preface

There is growing excitement about and commitment to 
CSEd as governments and organizations move to make 
computer science courses available to all students. While 
this movement is driven by multiple rationales, there can 
be no doubt that all parties are motivated by the desire to 
ensure students have the skills and opportunities they need 
to thrive in a world where computing is ubiquitous and its 
impact is felt in all areas of study and work. Along with 
this commitment is the responsibility to ensure that CSEd 
implementation in formal education is grounded in a solid 
understanding of what students need to learn, when they 
are ready to learn, and how they can best be taught.

Computer	science	is	a	dynamic	field	in	which	change	is	
a	constant.	It	is	also	a	young	field,	and	as	such,	it	lacks	the	
extensive and comprehensive body of educational research 
that other academic disciplines possess. As a result, we are 
playing catch up to disciplines such as mathematics and 
science that have been part of the educational canon since 
the earliest days of schooling. 

This paper provides two distinct perspectives into  
CSEd research. First, it provides a review of the current 
state of that research, outlining the current knowns and 
unknowns. Second, it shares the views of the highly-
regarded researchers and practitioners who generously 
provided interviews for this paper. We believe that this 
combination provides a rich perspective on where we are 
now and where we need to go. 

At Google, we believe in education and opportunity. 
We also believe in making decisions based on rigorous 
research. We hope this paper will help the CSEd community 
better understand what we know now and what we still 
need to learn. We further hope this knowledge can guide 
our efforts to support and contribute to new research efforts. 

Google is proud to have supported Dr. Paulo Blikstein’s  
work and hopes that this paper will generate much 
discussion in the CSEd practitioner and research 
communities.

Chris Stephenson
Head of Computer Science Education Strategy
Google
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3. Executive Summary

In	1967,	Seymour	Papert,	Cynthia	Solomon,	and	Wally	Feurzeig	created	the	LOGO	computer	language,	the	first	ever	designed	 
for children—an event widely considered as the beginning of CSEd. It has taken a few decades to enter the educational 
mainstream, but the largest and most ambitious implementations of CSEd have now started to roll out. With this widening  
acceptance of CSEd comes an overwhelming demand from school systems for research-based knowledge and implementation  
guidelines, especially for K–8 schools. To help meet this demand, Google commissioned this report. We aim to better 
understand what we know—and what we don’t know—about how children learn to program, the ways in which CSEd furthers 
the aims of public education, and how to chart a path to address imminent challenges. We have examined current literature 
and	conducted	interviews	with	14	leading	researchers	in	the	field.1 Our literature review reveals that the evidence and 
perspectives on what we know about how children learn to program is promising, but still limited:

• CS learning has the potential to be transformative. It includes algorithms, design, data, making, creativity, and personal 
expression. It also boosts the potential for productive collaboration and project-based learning in the classroom, 
connects to personally meaningful aspects of students’ lives, allows for new types of knowledge and assessments to  
be valued in schools, and opens up innovative ways to organize learning environments.

• Developing new pedagogies and approaches for learning a discipline as new as CS is a challenge. First, CSEd requires 
students to have a well-developed mental model of what computers are and how they run code, and how to interpret, 
trace, and debug programs. Second, programming tools and content are always changing, often leading to new 
pedagogies that are harder to orchestrate (e.g., project-based learning, students conducting group projects). Third, 
acquiring and assessing expertise in CS might not follow the same patterns of traditional school disciplines. Despite all 
this (or perhaps because of it), CSEd can provide a powerful and authentic context for learning computing concepts and 
also the content of other disciplines. In this way, it can serve as a new foundational literacy and an expressive, creative 
medium to allow young learners to share ideas in socially and culturally relevant ways.

•	 Paradoxically,	simplified	programming	languages	and	activities	can	complicate	future	learning	if	they	are	not	carefully	
designed.	Designers	are	not	always	aware	of	how	their	simplifications	can	lead	students	to	form	misconceptions	
regarding core CS ideas that might limit their future development. There is a need for novice-friendly programming 
environments and activities that provide robust pathways for transitioning into more complex projects or languages.

• CSEd implementations and tool development must be informed by well-researched age-related differences in what 
students can accomplish. Current research from science, technology, engineering, and mathematics (STEM) education 
and beyond should be used in the development of CSEd and the knowledge base should be continually expanded.

• New technologies and research methods are needed to help CSEd implementation, by creating tools to help teachers 
manage and assess complex student projects, and by providing researchers with new types of data and insights. 
Students’ usage of programming tools can be instrumented to collect data, potentially bringing unprecedented insights 
into student learning. But the interpretation of these data is still a challenge, and determining what representations of 
these data are useful to developers, teachers, and students is an open research question.

Addressing the known gaps requires attention to perspectives around how to implement CSEd equitably in schools. 
To do this, we must align different points of view about why CS should be in schools, decide on the kind of preparation 
and development teachers receive, increase our understanding about how learners develop key CSEd concepts and the 
appropriate practices within and across grades, and improve CSEd through research. In our analysis of interview data, we 
found that:

	1 While	most	of	the	interviewees	were	from	the	U.S.	and	are	grounded	in	the	U.S.	educational	experience,	the	author	hopes	that	international	readers	may	be	able	to	draw	
useful parallels to their own systems and research needs.
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• Important differences remain as to why CS should be in schools. We found varying rationales for CS in schools,  
but	also	some	similarities	that	suggest	the	possibility	of	finding	common	ground	to	advance	the	field.	

• Many believe that transforming CSEd will require special attention to equitable participation and integrated systems  
of teacher development. Equity and inclusiveness are seen as critical to advancing CSEd and are imperative to teacher 
development. 

• Many expressed the need for comprehensive rollouts that consider the creation of state-level standards, develop 
curricula and assessments, use appropriate pedagogies for various grade levels (especially for K–8), focus on 
teacher	preparation	and	certification,	provide	appropriate	software/hardware	infrastructure,	and	incentivize	research	
and evaluation. Otherwise, concern was raised about partial or selective rollouts as having the potential to further 
exacerbate social disparities and educational inequalities by favoring affluent schools or districts.

• Although there is much to celebrate and there are many success stories, our review found that the unintended 
consequences of the success of “CS exposure” projects are that they might lead to less focus on sustained activities 
because they generate a false sense of how much it takes to teach CSEd more broadly and deeply. 

• Despite the existence of CS standards, we found no comprehensive K–12 CS curriculum. Many believe that this 
curriculum should be attuned to cultural differences and made meaningful to increasingly diverse populations of 
students. Some expressed that excessive formalization and standardization of the CS curriculum might undercut  
the purpose of CSEd and diminish its potential for cross-disciplinary, creative, and innovative work.

• Research across grade levels reveals that students’ mental models about what a computer does when it executes 
programs predicts how well they learn to program, so the learning of such models should be a major focus in  
CSEd curricula.

•	 The	number	of	researchers	and	research	programs	in	CSEd	appears	to	be	insufficient	to	deal	with	new	large-scale	
rollout programs. Interviewees expressly stated that CSEd research must become more rigorous and connect more 
with new and established knowledge in cognitive science, education, learning sciences, and data mining. New funding 
pathways are also viewed as necessary for sustaining basic and applied research.

3.1 Recommendations
To	fulfill	the	vision	of	a	meaningful	and	sustained	CSEd	field	that	meets	the	needs	of	all	students,	policymakers,	educators,	
and	the	research	community	should	consider	improving	the	key	areas	identified	by	this	review:	

Create clarity around the different visions of CSEd
• Create clarity and alignment around the core rationales that varied stakeholders use to advance CSEd, highlighting their 

synergies, differences, and consequences for classroom instruction.
• As CSEd grows, it should maintain some of its key transformational and innovative elements, such as the focus on 

student project-based work and alignment with learner interests and ways of expression.
Make participation equitable 
• National roll-outs of CSEd must prioritize and evaluate their impact on improving the equitable participation of all 

students regardless of backgrounds, motivations, preparations, and abilities. 
• CSEd should be a mandatory content area in public schools in order to overcome biases and structural inequalities that 

prevent equitable participation.
Ensure teachers are prepared and supported
•	 Develop	integrated	systems	of	teacher	certification,	training	programs,	and	professional	incentives,	with	special	

attention to the pre-service pipeline for underrepresented communities. 
• Provide high-quality teacher preparation and induction models focused on inclusive CS pedagogical content knowledge.
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Create continuity and coherence around learning progressions
• Describe recommended sequences for CS knowledge and skills that can build on one another as students learn new 

topics over time.
• Develop robust and developmentally-appropriate programming tools for multiple age groups, especially for K–8, and 

domains that also provide additional insights into student learning.
Commit to ongoing and thorough research
• CSEd research funders, researchers, practitioners, and policymakers should develop a strategic plan for CSEd research, 

making it a stable, academically valued, and well-funded enterprise for years to come. 

Underlying	these	findings	and	recommendations	are	the	social,	economic,	and	cultural	barriers	surrounding	computing.	
Experts agree that if CSEd programs are not implemented with an eye toward equity, they will deepen educational 
inequalities that already exist and defeat the purpose of CSEd as a force for youth empowerment, democratic labor market  
access, and social justice. Much remains to be learned about the scalability, external validity, and optimal design of 
CSEd implementations. Given the scope and complexity of demands placed on them, interdisciplinary and inter-sector 
partnerships between public schools, universities, researchers, and industry will play a pivotal role in meeting the 
aforementioned objectives.
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4. Introduction

In 1967, Seymour Papert, Cynthia Solomon, and Wally 
Feurzeig	created	the	LOGO	computer	language,	the	first	
designed for children (Papert, 1980)—an event widely 
considered as the beginning of CSEd.2 In a time when 
computers cost millions of dollars and occupied entire 
rooms, teaching CS for children, while visionary, was a hard 
sell for school systems and policymakers. From the mid-
1970s to the early 1990s, CSEd slowly penetrated schools 
worldwide. Despite a decade of popularity in the 1980s, it 
never reached as deeply into the educational mainstream 
as Papert and his colleagues wished . Since the mid-
2000s, however, there has been a pronounced shift in the 
focus on STEM education, and CSEd is at the forefront 
of this process (National Research Council, 2012). As 
computational technologies have become inexpensive and 
pervasive in our lives, so has the demand for an educated 
and technologically literate labor force (Noonan, 2017; 
U.S. Department of Labor, 2007). The need for children 
to become future producers of technology, fluent in the 
medium of our time, instead of merely consumers has 
become a major focus for policymakers and researchers. 
Today, educators and CSEd advocates are pushing ahead 
with plans to add CS to the list of topics that all students 
should study (K–12 Computer Science Framework Steering 
Committee, 2016). 

Other catalysts to the mainstream acceptance of 
CSEd include the launch of the Scratch, Blockly, and Alice 
programming environments; the launch of CS teacher 
organizations such as the Computer Science Teachers 
Association (CSTA) (an international body founded by the 
Association for Computing Machinery [ACM]) the rise of the 
maker movement and fablabs; the creation of organizations 
providing CS learning opportunities such as Code.org, Black 
Girls Code, Girls Who Code, and others;3 and the rollout 
of national programs such as CS4All. As a result, there is 
an almost overwhelming demand from school systems 
worldwide for research and implementation guidelines, 
one which the relatively small CSEd education research 
community is simply not able to meet (Guzdial, 2017).  

The newness of the discipline is also an important factor. 
For example, while the U.S. National Council of Teachers of 
Mathematics (NCTM) was founded in 1920, and its science 
counterpart, the National Science Teachers Association 
(NSTA) was formed in 1944, CSTA was not launched 
until 2004. When NCTM and NSTA were formed, school 
infrastructure was already in place for these disciplines, 
thousands of mathematics and science teachers were 
teaching in schools across the U.S., and teachers colleges 
supported a strong pipeline for more. CSEd does not have 
those advantages today. The current focus on CSEd has 
also generated much discourse regarding its purpose. Is 
the	rationale	for	CSEd	to	fulfill	job	market	needs,	promote	
personal empowerment, teach children to code, develop 
students’ fluency in a new literacy, address historical 
educational inequalities, or some combination of all of the 
above? See a timeline for CSEd in Appendix C.

Google commissioned this work to better understand 
the knowns and unknowns with regard to the state of 
the	CSEd	field	in	relation	to	our	understanding	of	student	
learning and the research opportunities that exist or 
that might be created to ensure fruitful and sustained 
advancement for all students. With this goal in mind, this 
report summarizes an examination of literature reviews and 
articles and interviews conducted with a number of leading 
researchers	in	the	field.

2 John	Kemeny	and	Thomas	Kurtz	(Dartmouth	College)	created	the	BASIC	
programming language in 1964, but LOGO is used as a landmark because of its 
comprehensive focus on all segments and age levels of education, especially children. 
3 There	is	a	large	number	of	such	organizations,	many	focusing	on	underserved	
populations: Black Girls Code, Girls Who Code, Girls Code it, CoderDojo, Technovation, 
Yes We Code.
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5. Methods

We utilized three major data sources for this report: (1) a 
review	of	all	foundational	works	in	the	field,	and	existing	
literature reviews, (2) interviews, and (3) analysis of  
papers and resources recommended by interviewees  
(see Appendix A for full details on the methods used  
and for the full list of interviewees). 

For	the	interviews,	we	selected	leaders	in	the	field	
from various universities and institutions, trying to 
balance intellectual traditions, academic backgrounds, 
and	expertise.	The	final	group	of	interviewees	consisted	
of 14 practitioners, researchers, and scholars. We used a 
semi-structured protocol for the interviews that included 
questions about the relevance and importance of teaching 
CS,	the	main	research	findings	in	the	field,	and	research,	
policy, and implementation agendas for the next year  
(see Appendix B for interview protocols). 

We used the literature to add a layer of peer-reviewed 
research to the themes extracted from the interviews, and 
triangulated	research	findings	across	interviews	and	the	
literature. We chose this hybrid format (interviews and 
reviews) to simultaneously capture well-established facts 
and	findings	from	seminal	and	contemporary	literature,	and	
novel information that has not yet been published in the 
field.	Also,	some	of	the	important	challenges	and	issues	
in CSEd do not show up in peer-reviewed publications 
because many active members of the community are tool 
developers rather than researchers—so their work is less 
likely to be be captured in a traditional literature review. This 
combined use of interviews and literature gave us a more 
comprehensive view of the state of the young and dynamic 
field	of	CSEd.

After	the	first	complete	draft	was	finished,	all	14	
interviewees were given the opportunity to fully review the 
text and suggest further changes, which were individually 
considered	for	the	final	version.

6. Rationales for Justifying CS Education

Support for CSEd is strong, but the reasons why often 
vary. Similar to a recent study by Vogel, Santo, and Ching 
(2017), we found that the interdisciplinary nature of CS 
brings together very different stakeholders and views. CSEd 
includes professionals from different academic cultures 
and professional allegiances: university professors, K–12 
educators, CEOs of technology companies, entrepreneurs, 
government	officials,	and	diversity	and	equity	advocates.	
Not surprisingly, the data from the interviews and literature 
revealed	many	different	justifications	for	why	CS	should	
be taught in public education systems (e.g., diSessa, 2000; 
Wing, 2006). These rationales can be expressed as four 
distinct positions: 

•  The labor market rationale, 
•  The computational thinking rationale, 
•  The computational literacy rationale, and 
•  The equity of participation rationale.

Making these four rationales explicit is important 
because they drive the way we write curricula, train 
teachers, and implement CSEd in schools. Interviewees 
pointed out that the public’s lack of awareness about 
these different viewpoints—and the ways they are similar, 
dissimilar, complementary, and compatible—must be 
addressed (e.g., Buechley, 2017; Resnick, 2017).

6.1 The labor market rationale

Labor market changes and the need to sustain a 

competitive economy are the main driving forces for this 

rationale. Some consider that CS knowledge will be useful 

in a variety of 21st century non-technical jobs, so it will be 

universally valuable for all professions.

Changes in the U.S. labor market have been a major driver 
of the efforts to teach CS in the nation’s schools. This 
rationale is primarily related to the demands for more 
workers with new skill sets and is frequently championed 
by industry leaders and policy makers. The labor market 
argument	comes	in	two	chief	forms.	The	first	cites	the	
hundreds of thousands of open jobs in CS (Google LLC & 
Gallup Inc., 2016; Grover & Pea, 2013), and notes that this 
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number will increase in years to come, with data science 
and	artificial	intelligence	becoming	mainstream	fields	
relevant across many industries. Similarly, it is argued that 
the economic productivity or contributions of a country will 
be determined by its capacity to generate more scientists 
and engineers. CSEd can presumably contribute to this 
vision	by	fixing	the	“leaky”	STEM	pipeline	and	driving	more	
students to pursue CS careers. However, Grover and Horn 
point out that in grades K–8 especially, this concern with 
jobs might be misplaced:

  In elementary school, students and teachers are 
definitely	not	thinking	about	jobs.	It	is	about	what	are	
the foundational knowledge and skills that children 
should have? At the middle school level, even though 
it is not a jobs argument, I think there is an identity 
argument there. This is especially relevant to computing 
because there are so many stereotypes associated  
with it. (Grover, 2017)

  We have gone a little too far on the commercial 
end of the spectrum, we have become preoccupied 
with training the next generation of engineers, 
these economic motivations are outweighing the 
computational literacy ideas. (Horn, 2017)

The second form the labor market argument takes 
is a subtler one. It argues for more CS knowledge 
embedded in all careers, instead of simply training more 
programmers. Several of the interviewees mentioned that 
while professional programmers will be necessary, the need 
could be restricted to a relatively small number of positions 
that are highly specialized (Guzdial, 2017; Resnick, 2017; 
Shapiro, 2017). Some reports suggest that only about six 
percent of the workforce will need to do coding with the 
scope and specialization of professional programmers 
(Noonan, 2017). The greatest demand would not be for 
professional programmers, but for other professionals 
who will have to use CS and programming for automating 
spreadsheets, programming queries, accessing online 
databases, using data mining software tools, and operating 
physical computing devices in interactive art or home 
automation.

6.2 The computational thinking rationale

The argument for “computational thinking” is that 

computer scientists’ ways of thinking, heuristics, and 

problem-solving strategies are universally important, 

would transfer to a variety of knowledge domains and to 

the solution of everyday problems, and would support the 

development of students’ higher-order thinking skills.

The second argument for teaching CS derives from the 
concept of “computational thinking,” (CT) as put forth in 
a position paper written by Jeanette Wing (Wing, 2006). 
Wing proposed that computer scientists’ ways of thinking, 
heuristics, and problem-solving strategies are universally 
important for both applying computing ideas to do work 
in other disciplines, and for applying computing ideas in 
everyday life. Examples are the ability to use abstractions 
and pattern recognition to represent problems in new ways, 
to break down problems into smaller parts, and to employ 
algorithmic thinking. With 3,000 citations (according to 
Google Scholar as of October 2017), the position put 
forward by Wing has played a critical role in shaping the 
world of CSEd. Her paper and her influential position 
as	a	National	Science	Foundation	(NSF)	officer	helped	
reinvigorate	the	field.	Some	researchers,	however,	are	
skeptical about how well students transfer CS knowledge 
to everyday life and general problem-solving. diSessa 
(2017) mentions that there have been several attempts 
over the last 100 years to teach children transferable 
problem-solving or higher-order thinking skills (HOTS) 
using mathematics, Latin, or Greek, but these endeavors 
often failed. Guzdial (2017) mentions several studies on the 
transfer of CSEd knowledge and points out that generally 
“students fail to apply even simple computing ideas to fairly 
simple problems.” Yongpradit further notes that:

  CSEd is not immune to the misconceptions about  
high-level transfer. I know that there are advocates… 
saying that computer science can improve general 
critical thinking skills. That’s not supported by research. 
It will not magically improve your math scores. 
(Yongpradit, 2017)
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Because Wing’s original ideas are still influential in the 
field,	the	lack	of	empirical	evidence	and	the	absence	of	a	
more	definitive	unpacking	of	the	term	CT	are	considered	to	
be	major	gaps	in	CSEd.	But	the	definition	of	CT	has	been	
evolving over the last few years, as Grover notes:

 The	definition	of	CT	has	been	evolving	since	Wing,	
and in its evolution it has broadened to encompass 
aspects of CT concepts, practices, as well as learners’ 
dispositions and perspectives, perhaps fueled by 
a genuine desire to broaden participation, thus 
including aspects such as creativity, collaboration, and 
communication in practices of CT. (Grover, 2017)

6.3 The computational literacy rationale

Computational literacy is not a new skill or a class of 

problem-solving strategies, but a set of material, cognitive, 

and social elements that generate new ways of thinking 

and learning. It enables new types of mental operations 

and knowledge representations, creates new kinds of 

“literatures,” makes it possible for people to express 

themselves in new ways, and changes how people 

accomplish cognitive tasks.

With more than 1,000 citations (according to Google 
Scholar as of October 2017), Andrea diSessa’s book 
Changing Minds is the most established account of the idea 
of “computational literacy” (diSessa, 2000). In the book, 
and in recent publications (diSessa, in press), he explains 
how different computational literacy is from the original 
definition	of	“computational	thinking”	(a	similar	discussion	
appears in Wilensky & Papert, 2010).

  Learning to use a new medium takes effort. The 
printing press was a huge leap in human history, but 
that leap did not happen until many more people 
became literate. A printing press is not of much use 
unless authors know how to write and your audience 
knows how to read. Achieving computational literacy 
in society means that people can read and write with 
computation, which includes an ability to read and write 
computer programs. (diSessa, 2000)

  I view computation as, potentially, providing a new, 
deep, and profoundly influential literacy—computational 
literacy—that will impact all STEM disciplines at their 
very core, but most especially in terms of learning. 
(diSessa, in press)

diSessa claims that computational literacy is not 
simply a new job skill or generic CS-inspired problem-
solving strategy, but a set of material, cognitive, and social 
elements that generate a new way of knowing, thinking, 
learning, and representing knowledge. A new literacy 
makes new types of mental operations and knowledge 
representations possible, creates new kinds of previously 
nonexistent “literatures”, and changes how people interact 
with each other and use computers and digital devices 
when they are accomplishing cognitive tasks. He also 
mentions that there is a semantic confusion between 
computational literacy versus terms like digital literacy, 
computer literacy, or Information Communication and 
Technology (ICT) literacy. These latter terms refer to 
the competent use of different computational devices 
and technologies. Computational literacy, conversely, is 
concerned with how computational media can change the 
way we know, learn, and think (in contrast with the focus on 
problem-solving or higher-order thinking skills). 

diSessa also argues that concepts in science and 
mathematics can be made simpler using computational 
representations. For example, velocity and acceleration are 
simpler to understand algorithmically but unnecessarily 
complex to learn using traditional algebraic representations. 
Chemical processes such as diffusion, given their 
probabilistic nature, are convoluted when represented 
in algebraic terms, but very simple to learn using 
computational tools such as agent-based models (e.g, 
NetLogo, Wilensky, 1999), in which students can program 
the behavior of atoms. The argument for computational 
literacy extends beyond the need for teaching programming 
languages. It makes the claim that several disciplines 
could be fundamentally transformed if taught using 
computational tools, in the same way that text literacy 
changed the teaching of so many disciplines centuries 
ago.4 Sentance, Resnick, and Horn also stress that 

4 Text	literacy	fundamentally	changed	how	we	accomplish	cognitive	operations—
for example, it acts as external memory, it is shareable, and permanent. diSessa 
and others claim that computational literacy could have the same revolutionary 
consequences.
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computational literacy is multi-faceted, and more than just 
learning computational thinking or programming concepts:

  I think computational thinking skills exist…I think we just 
have to be careful about thinking that computer science 
is only computational thinking. CS…involves modeling 
and design and creativity, more than just the cognitive 
elemental thinking skills. That is what we need to teach 
in K–8. We need to teach the whole subject and be 
cautious of being too narrow in what we are offering in 
the curriculum in school. (Sentance, 2017)

 Gaining a literacy is a matter of developing your 
thinking, your voice, and your identity…The reason for 
learning to write is not just for doing practical things but 
being able to express your ideas to others. Computation 
is a new way of expressing ourselves and it’s important 
for everyone to learn…If you want to feel like a full 
participant in the culture, you need to be a contributor 
with the media of the times. (Resnick, 2017)

 It is about supporting computation in many different 
genres or niches. As a poet, the way you use computation  
might be very different than a journalist, a researcher, 
or somebody who works in government. Just like we 
have different forms of literacy, we might have different 
forms of computational literacy. (Horn, 2017)

However, as diSessa states, discussions about the 
role and importance of CSEd are far from over and these 
views should all be earnestly considered with their implicit 
contradictions: 

 The labor market view and the computational 
thinking view contain at least implicit criticisms of the 
computational literacy view. The former might think that 
immediate and practical economic effects are more 
important, and the latter suggests that computational 
literacy is diffuse, hard to implement, and might 
insist that high-order thinking skills do exist, so these 
perspectives should not be ignored. (diSessa, in press)

Some interviewees pointed out that the boundaries 
between	CT	and	computational	literacy	are	not	well-defined.	 
While	Grover	(2017)	states	that	new	definitions	of	CT	have	 

been evolving to include, for example, creativity and  
collaboration, formerly mostly associated with computational  
literacy,	Guzdial	(2017)	worries	that	these	new	CT	definitions	 
“are	going	too	broad,”	and	Resnick	notes	that	the	definition	
of	CT	“out	in	the	field”	is	still	very	much	connected	to	the	
original one as stated in Wing’s 2006 paper.

6.4 The equity of participation rationale

CS knowledge will be required for the best and most 

creative jobs, for civic participation, and for understanding 

the impact of computation on society. Additionally, since 

our cognitive capabilities will be limited by our ability 

to utilize computation, equity of participation in CSEd 

becomes the central concern, and is one of the most 

significant gaps in research and implementation.

Several interviewees mentioned equity as their central 
concern in CSEd, arguing that it has traditionally been 
a	side	issue	in	the	field	and	one	of	the	most	significant	
gaps in research and implementation. There are two main 
issues related to the topic: 1. Understanding the impact of 
computation on society, and 2. Ensuring equity and diversity 
in participation. 

The K–12 Computer Science Framework (K–12 
Computer Science Framework Steering Committee, 2016) 
also recognized equity and broadening participation as one 
of the core issues in CSEd.

Students excluded from CSEd may struggle to 
fully participate in 21st century society along multiple 
dimensions. Not only will the best and most creative 
jobs require CS knowledge, but our cognitive capabilities 
to solve problems will be limited by our inability to 
utilize computation fully. Even traditional forms of civic 
participation will require an understanding of CS. As 
Buechley stated:

  We live in a computationally mediated world, and it is 
important for people to have an understanding of how 
computational systems work and the role that they play 
in those systems, how those systems impact their lives, 
our democracy, the economy, and the way we socialize 
and interact with people. (Buechley, 2017)
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Several interviewees gave examples of how 
computer science will become increasingly crucial for 
civic participation and informed decision making. These 
examples include knowing what algorithms are, how 
computational tools can manipulate social media, how to 
participate in a social discourse mediated by algorithms, 
and how to make sense of job displacement due to 
automation. It is also important to be aware of the presence 
and consequences of technologies such as machine 
learning	(ML)	and	artificial	intelligence	(AI)	in	a	number	
of everyday devices and experiences; understanding how 
much information we divulge (sometimes unknowingly) 
about ourselves; and being aware of the ways in which 
bias can get built into technologies that influence critical 
decisions such as prison sentencing, mortgage allocation, 
and the deployment of neighborhood policing resources 
(O’Neill, 2016; Shapiro, 2017). The comprehension of the 
rapidly evolving landscape of devices and tools that are key 
for active participation in modern society is also central to 
this argument. Students who do not fully understand these 
issues risk being more easily manipulated as consumers, 
voters, and citizens, and more vulnerable to cybercrime. 
They also are less likely to have access to leadership 
positions and high-status jobs, and are more likely to be on 
the sidelines of future societal change. 

The interviewees also noted that CS drives innovation 
across many disciplines and industries and that the resulting  
changes have had both an economic and sociological 
impact. Some also said that allowing students to explore 
their social and cultural concerns using computing helps 
motivate and engage them and make CS relevant to their 
lives, especially in diverse populations (Margolis, 2017). 
Buechley (2017) adds that when you put computing in 
contexts that can be compelling and exciting to different 
groups of people, “you get diverse populations to show up 
and participate,” and stresses the importance of making 
conscious, deliberate space for that to happen. Many 
interviewees noted that private and more affluent schools 
will most certainly be able to offer CSEd programs with high 
complexity, while less affluent or public school systems will 
only	offer	very	simplified	versions:

  Private schools do not do just generic education. They 
have kids working on portfolios. They have children 
doing internships. They have kids doing projects and 

making it relevant to them…Standardized education 
which has no connection to kids’ lives is what is often 
given to poor kids. (Margolis, 2017)

 [I	was]	working	first	in	informal	settings	and	then	in	
recent years, I have moved more in the formal space. 
I saw it as being more relevant because that is now 
seen	as	a	way	to	level	the	playing	field	and	make	sure	
that all children get it, not just those that happen to be 
fortunate to get it through after-school experiences. 
(Grover, 2017)

Grover noted that the Obama administration’s naming 
of the national CSEd effort as “Computer Science for All” 
when it was announced in January 2016 supported this 
perspective:

 This of course came as a result of notions the 
community grew to accept over the previous 5 years...
CSForAll is now a well-used term that captures this 
“equity of participation” notion. (Grover, 2017)

Sentance (2017) stresses the importance of making 
CS mandatory in all schools, for all students, not as 
mere “exposure,” but as a way to avoid self-selection. 
The interviewees also noted that the lack of a diverse CS 
workforce results in the design of products and services 
that cater to a very narrow range of people and problems, 
thus perpetuating inequality. Researchers concerned with 
the equity argument also posit that we could see a much 
worse version of the “digital divide” in the years to come if 
immediate and intentional actions are not taken to address 
these inequities while we are still in early design stages 
of CSEd. diSessa believes that there is agreement in the 
community about the topic:

 I don’t think there’s any reasonable dissent on the 
importance of social context and diversity concerns. 
Only strategic differences. (diSessa, in press)
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7. Implementation Considerations

This section highlights perspectives on key components 
needed across the CSEd system to support wider and more 
effective	implementation.	The	“system”	we	define	includes	
the various interrelated institutions and mechanisms that 
shape and support CSEd teaching and learning in the 
classroom. 

The key components of CSEd that we review in this  
section are curriculum, instruction, and teacher development.  
It’s	difficult	to	focus	on	any	particular	component	without	
considering how it is influenced by—and how it in turn 
influences—the other components. For example, what 
students learn is clearly related to what they are taught, 
which itself depends on many elements: the instructional 
materials available in the market; the curriculum adopted 
locally; teachers’ content and pedagogical knowledge; how 
teachers elect to use the curriculum; the kinds of resources, 
time, and space that teachers have for their practice; what 
the community values regarding student learning; and 
how local, state, and national standards and assessments 
influence instructional practice.

We are not attempting to provide a full discussion of all  
possible influences on CSEd; rather, we focus on the themes  
that emerged from our review and how they might contribute  
to a more coherent and inclusive implementation of CSEd.

7.1 Systemic obstacles

Equity should be a priority, but rushing products to 

market can harm efforts to attract underrepresented 

students. As CSEd scales up, excessive formalization and 

standardization might undercut its very purpose and hinder 

development of creative solutions and uses of CSEd. 

The interviewees highlighted the importance of systemic 
obstacles to consider when scaling up CSEd efforts and 
programs. The following sections explore the barriers they 
identified.	

The need to broaden equitable participation. Several 
interviewees mentioned broadening participation in 
and changing perceptions of CS as perhaps the most 

important challenges for our community. Berland, Buechley, 
Margolis, Sentance, and others stressed the striking 
contrast between what happens in CS classrooms in 
affluent schools and less affluent schools. Almost all of the 
interviewees expressed concern with the unequal presence 
of CS in public schools, the quality of instruction, and the 
unconscious bias of some educators and counselors 
regarding who is “suited” to take the CS classes. They also 
noted that while affluent schools are more likely to offer 
comprehensive CS programs for their students, most public 
districts are ill-equipped to offer anything more than very 
brief, standardized experiences which they fear could give 
school administrators and teachers an incorrect metric for 
CS adoption and distract them from implementing more 
robust CS programs in their schools. The interviewees also 
worry	that	the	reach	numbers	advertised	by	nonprofits	and	
industry providers give the impression that the “mission 
has been accomplished,” whereas most agree that we are 
still very far from providing CSEd to all students. At least 
three researchers also noted that funding currently provided 
to large national organizations would be better directed 
to	research	institutions	or	smaller,	more	local	nonprofits.	
Yongpradit (2017) noted that national organizations can 
be a channel for funding to smaller organizations: “Code.
org supports local implementation through...more than 60 
regional	partners,	most	of	which	are	local	nonprofits.”

It is essential to examine how to broaden participation 
in CSEd. Most interviewees favored programs that make 
learning CS more attractive by focusing on personal 
expression and creativity, especially at K–8 level. They also 
agreed on the importance of culturally relevant curricula 
that support diverse ways of approaching CS and diverse 
ways of expressing one’s knowledge. Buechley (2017), 
for example, mentioned that computer scientists and 
engineers tend to discount culture and cultural relevance 
as key factors in learning and in CS educational tool design. 
In her work, she instead focuses on creating new types of 
clubhouses and computing cultures that speak to these 
diverse practices. Michael Clancy also advocated for CSEd 
that incentivizes meaningful engagement:

  Students will be more motivated to work if the 
assignments allow creativity, and allow the student to 
relate to his or her experience. Part of that would be 
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more flexible tools that allow a student to make better 
use of his or her experience. What I would like to see 
is some way to have a broader scope and interest of 
activities (Clancy, 2017).

Some	identified	the	need	to	make	CSEd	mandatory	for	
all students as a means of ensuring equitable participation. 
Sentance (2017), for example, argued that “if we don’t 
make computer science mandatory, we know from 
previous experience that self-selecting groups of people 
will choose computing…so we have a responsibility to offer 
that to all children and to reach everybody.” Yongpradit 
(2017) stated that schools should at least be required to 
offer CSEd, and that we should make CS and CS-related 
courses available permanently for students in public 
schools. Guzdial (2017) expressed concern that some 
states are trying to implement “CS4All” without an explicit 
focus on underserved groups. He points out that affluent 
schools will be able to move quickly to provide CS for 
their students while less affluent schools will struggle 
with	financial	limitations,	further	exacerbating	the	“coding	
divide.” Margolis also noted that, while the CS for California 
campaign has an equity agenda,

  The rush to scale and the pressure to put curriculum 
and teacher professional development (PD) online will 
possibly have dangerous unintended consequences 
for the issue of equity...The learning partnership of 
teachers and of researchers needs to become part of a 
dynamic iterative cycle for continuous improvement…
For programs to sustain themselves, to change the 
culture of the schools so that teachers are supported 
to have active, engaged, inclusive classrooms, 
for programs to be fully embraced by the districts 
themselves. It is the slow work of relationship building 
and learning together that is required. For this to 
happen there also needs to be a holistic awareness of 
all the educational issues in schools that continue to 
threaten equity. CS in schools does not exist on isolated 
islands. All of the large issues impacting education, 
such as the move for privatization, de-professionalizing 
teachers, and school tracking will affect our broadening 
participation in the computing mission. (Margolis, 2017)

Different approaches for the scaling and assessment of 
CSEd. Buechley, Shapiro, Berland and other interviewees 
expressed concern about traditional forms of school reform 
taking	over	the	implementation	of	CSEd.	Specifically,	they	
noted	that	fixed	curricula,	standardized	assessments,	
and inflexible teacher training programs do not foster real 
scientific	or	mathematical	thinking	in	students	(National	
Research Council, 2006; 2012) and have a questionable 
track record for motivating students to pursue STEM 
careers (Maltese & Tai, 2011). For Buechley (2017), one 
dominant	narrative	around	CSEd	is	that	“we	need	to	figure	
out	the	concepts,	and	teach	them	in	the	right	way	in	a	fixed	
curriculum.” She disagreed with this narrative, however, and 
instead advocated for a perspective in which motivation, 
engagement, personally relevant projects, and culturally 
aware curriculum design take precedence. diSessa (2017)  
stressed that “this is quite consistent with the computational  
literacy perspective, which emphasizes use over mere 
technical	proficiency.”	According	to	Buechley,	CS	lends	itself	
especially well to projects and interdisciplinary work that 
connect CS to art, design, biology, or mathematics:

 Connecting computation and computing to different 
practices, which sometimes coincide with really 
different ways of approaching and making sense of the 
world, is the most powerful way that you can engage 
different kinds of people in computing…As one example, 
I have been connecting computation to textile crafts, 
textile design, and fashion design, and I have found that 
through doing that, you can dramatically change the 
gender participation ratios. You can get lots of young 
women to engage enthusiastically with computing 
in a way that they just do not do in more traditional 
computer science contexts. 

 Computer science is a fundamentally creative 
discipline. You construct things when you write a 
computer program. And in that sense, it’s really distinct 
from mathematics or science. That is a distinction that 
is not fully appreciated and made sense of, but is very 
powerful and important. (Buechley, 2017)



Pre-College Computer Science Education: A Survey of the Field 15

Berland expressed a similar concern:

  There are very few subjects in which students feel like 
they can make a change in the world and they can 
express their independent selves. I think their ability to 
make their own games, make their own art, make them 
in ways that are shareable with code, is really powerful. 
[Instead of giving students the right answer] it is better 
to create safe spaces to fail, to play, to tinker…This is 
where you get the bang for the buck. That’s where the 
learning happens. Another truism of education is that 
things are driven by the ways that they are assessed. If 
you assess people for knowing this or that keyword in 
C++5, then that’s what you’re going to get and that’s not 
particularly valuable, but if you assess people on their 
ability to teach each other complex concepts, that’s 
what you’re going to get. (Berland, 2017)

Fincher (2017) cited the UK’s Project Quantum6 as 
an example of an explicitly research-based project that 
combines scholarly work, practical utility, curriculum 
scaffolds, and teacher PD.

The persistent lack of resources, rush to release  
low-quality programs, and reliance on surface-level 
solutions. Margolis expressed concerns about the speed 
at which solutions are being developed and put into 
classrooms, and argued that this approach has unintended 
educational consequences, especially for members of 
underrepresented groups:

  The idea of many programs is] ship it out. Get it out 
there and we will see if there are bugs in it, right? That 
has some real potential dangers in education because 
you put something online and the school district says, 
“Okay, we’re going to do computer science online,” and 
then all of a sudden the girls and a lot of the students 
of color don’t do well, and then the principal says, 
“See? Our kids are not up for computer science. They 
didn’t do well. They’re not interested.” In fact, they just 
experienced horrible instruction, and so they get turned 
off, but in their minds they’re not cut out for it, and in 

the minds of the principals they’re not cut out for it. 
(Margolis, 2017)

Grover voiced a similar concern. She has been 
observing and researching citywide implementations in the 
U.S. and examining the quality and depth of the projects. 
She noted the simplicity of the projects she observed 
and the need to more deeply engage groups historically 
underrepresented in CS:

  Almost no one uses Boolean logic. They use variables 
but just as a count or a score. You barely ever see 
expressions with variables being used or you will 
rarely see a loop with a terminating condition that is 
controlled by a Boolean expression with variables. Also, 
I read this paper from Yasmin Kafai and Deborah Fields 
where they analyzed the Scratch community projects 
[in 2012].7 Most children stayed at the shallow end, they 
used the simplest constructs. (Grover, 2017)

Shapiro (2017) voiced concerns about the 
concentration of resources in just a few CSEd 
organizations, which could lead to “very homogeneous 
curricula/programs which would move us in the opposite 
direction” from many of the progressive approaches 
discussed in the CSEd community. Similar concerns have 
been voiced by many prominent educators in light of 
large-scale implementations in many U.S. cities. As those 
implementations roll out, the quality of instruction has often 
been	criticized	as	superficial,	stifled,	and	insufficient	to	
create fluency. Gary Stager observed: 

  I wish I had 1 cent for every educator who has told 
me that her students “do a little Scratch.” I always 
want to respond, “Call me when your students have 
done	a	lot	of	Scratch.”	The	epistemological	benefit	of	
programming computers comes from long intense 
thinking. Fluency should be the goal. (Stager, 2017)

Changing perceptions of CS and exploring new domains 
and tools. Interviewees discussed the importance of 
different ways of doing CS, in terms of tools, programming 

5 C++	is	a	very	popular	professional	programming	language. 
6 http://community.computingatschool.org.uk/resources/4382/single 7 The paper examined data from a subset of about 5,000 users in January 2012.
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languages, developmental levels, and approaches to 
organizing one’s practice. In 1990, Sherry Turkle and Seymour  
Papert published an influential paper on Epistemological 
Pluralism, in which they described a study where children 
engaged in programming in a variety of ways that were all 
ultimately successful (Turkle & Papert, 1990). Even though 
some children were violating the canons of traditional 
programming practice (the “bricoleurs”), they were doing 
so in a personally meaningful way that allowed them to 
create a strong connection with programming. Echoes of 
this influential paper were heard in almost all the interviews, 
and the principle of epistemological pluralism appears to 
have taken hold in CSEd at the K–8 level. Grover (2017), 
however, pointed out that the epistemological pluralism 
approach needs to be combined with the teaching of some 
agreed-upon concepts and programming practices. When 
Resnick (2017) pointed out the need to keep pushing for 
epistemological pluralism, he noted that some systems only 
reward students for standard ways of doing coding (i.e., 
the smallest number of blocks when solving a puzzle), and 
some automated assessment programs still grade students 
solely based on the number and types of programming 
blocks they use. The interviewees also expressed the belief 
that traditional professional or college-level practices should 
not be automatically used in K–8 environments, since  
nontraditional approaches to programming (such as bricolage)  
may make sense only for younger students, even if advanced  
programmers might sometimes make use of these techniques  
as well (Berland, Martin, & Benton, 2013; Blikstein, 2011; 
Blikstein et al., 2014; Brennan, 2013; Graham, 2004).

Government officials need support in scaling efforts. 
Guzdial (2017) is currently helping many states conduct 
landscape surveys8 to determine the state of CSEd in 
different parts of the country. He contends that policy 
decisions and coordination between different stakeholders 
would be much easier if landscape surveys were standard 
operating practice, as they allow states to gauge the growth  
of CS offerings, PD programs, and enrollments. Yongpradit 
(2017) also noted that federal and state-level organizations 
urgently need technical assistance around creating 
certifications,	growing	the	CSEd	teacher	pipeline,	and	
implementing	curricula.	Because	CSEd	is	such	a	new	field,	

there are too few trained professionals and specialized 
organizations that can offer those services. Yongpradit 
also expressed concern with current funding levels, noting 
that CSEd requires more PD, standards development, and 
support for task forces to create implementation plans.

7.2 Curriculum and instructional materials

There are a variety of curricula and instructional 

strategies that have been explored in CSEd. Among the 

recommendations we have seen are for CS curricula to be 

culturally relevant and meaningful to students, for STEM 

subjects and CS activities to be integrated, and for CS 

courses to be designed based on code production rather 

than specific languages. 

Curriculum refers to the knowledge and practices that 
teachers teach and that students are supposed to learn 
in a subject. A curriculum generally consists of a scope, 
or breadth of content, and a sequence of concepts and 
activities for learning. The production of a quality curriculum 
and curricular materials is, for many interviewees, a key 
component for successful CSEd implementations at scale. 
The	interviewees	noted	that	this	is	an	area	of	significant	
and ongoing challenge despite efforts such as the K–12 CS 
Framework (K–12 Computer Science Framework Steering 
Committee, 2016):

  No one yet has written out a full, coherent K–12 
curriculum built around a foundational framework. The 
K–12 CS Framework and the CSTA standards have laid 
out concepts, practices, and performance expectations 
but how do these things get manifested in curriculum 
and activities and experiences in K–12? That is a huge 
problem in computer science right now that directly 
affects implementation. (Yongpradit, 2017)

Creating comprehensive curriculum materials is 
especially challenging because there is a natural tension 
between uniformity and the potential for customization 
to the learners’ interests. Many interviewees noted the 
need to design culturally and personally relevant curricula 
that would cater to diverse populations (Buechley, 2017; 
Margolis, 2017; Resnick, 2017; Shapiro, 2017):

8 http://ecepalliance.org/resources/landscape-reports
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 The most important challenge is relating computer 
science to [students’] culture and their identity. If 
you can get someone excited about something and 
engaged, they are incredibly motivated to learn. 
(Buechley, 2017)

Media Computation is a well researched college-level 
curricular approach that dramatically increases student 
interest and performance. Guzdial’s introductory CS 
course focused on the design of relevant computational 
artifacts. This has doubled success rates and the impact 
was especially strong for female students (Guzdial, 2013, 
2014). Even though Media Computation is mostly used in 
higher education, its curricular design principles are widely 
applicable. Guzdial argues that productive CS curriculum 
building requires four steps:

1. Figure out what has to be learned.
2. Understand the learner’s motivations and goals, and  

make	a	significant	effort	to	know	what	they	are	interested	 
in and what communities of practice inspire them.

3. Find a context in which you can teach what has to  
be learned while respecting the learner’s motivations 
and goals.

4.	 Assess	the	results	and	refine.	

However, research has also unearthed other important 
principles for curriculum design in CS, as we review in the 
next sections.

Curriculum building principles. Researchers have been 
uncovering and deconstructing the typical assumptions 
that underlie the design of CS courses, to try to reveal 
hidden degrees of freedom in instructional design. A crucial 
dimension of design is how students will come into contact 
with the material. Pears’ et al. (2007) review of the literature 
found three major approaches in how most CS courses are 
designed: (a) focus on generic problem solving, (b) focus 
on learning a particular programming language, and (c) 
focus on code production, or project-oriented CS courses. 
As we discussed previously, the focus on higher order 
problem-solving skills is problematic. Palumbo’s (1990) 
review examined transfer between learning to program 
and problem-solving and concluded that more advanced 
forms of transfer (far or generalized transfer) should not 
be expected in introductory courses in CS, since typically 

there is no time to develop such skills. In other words, if 
curricula aim for the transfer of problem-solving skills to 
other domains, explicit time and effort should be put into 
it.	The	second	approach,	based	on	the	learning	of	specific	
programming languages, is by far the most common. 
Textbooks, lesson plans, and assessments are designed 
based on the constructs of a particular programming 
language. This focus, common in introductory college 
courses and Advanced Placement (AP) classes in the U.S., 
has been criticized by several interviewees as being too 
limited and too vocational. Buechley, for example, praised 
new initiatives (such as the new Advanced Placement 
Computer Science Principles course) that are moving AP 
classes away from the “one language” model:

  So [Computer Science Principles] is a class that 
provides a different model of engaging with computer 
science than the traditional computer science AP 
class did. And a model that is much more focused on 
foundational concepts and big ideas as opposed to the 
nuts and bolts of programming in a particular language. 
And because of that, it has the potential to provide 
more accessible pathways to more diverse kids, which 
is really important. (Buechley, 2017)

The third approach is code production or project-
oriented learning. Instead of small assignments and tasks 
based on language constructs, or more general problem-
solving training, students learn to create more complex 
systems to accomplish a task through projects. Even 
though this approach is harder to structure and assess, it 
seems to be more aligned with the approaches advocated 
by most interviewees. Resnick, for example, advocated for 
a project-oriented approach rather than small puzzles or 
language-based activities:

  There are a lot of schools where they do something 
with	coding	but	it	is	done	very	superficially,	just	learning	
a few tricks of how to put some blocks together…but 
not really connecting in a deep way. [CS should not be] 
just puzzles for kids learning to solve a problem, but a 
platform for expressing yourself. (Resnick, 2017)

Affinities between computer science and other disciplines.  
Early research in computer programming found that there 
are	natural	affinities	between	some	topics	in	mathematics	
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and programming but that not all mathematical topics 
can be successfully integrated into CS. Researchers found 
that	the	benefit	of	computer	programming	on	traditional	
arithmetic skills is small (Butler & Close, 1989), but when 
lesson plans are redesigned to use programming as a 
way to explore rich mathematical practices, they can 
help students understand basic number sense, such as 
relationships between size of numbers and length of a line 
(Bowman, 1985). There is also evidence that the use of 
programming can help students understand variables and 
algebra (Carmichael, 1985), ratio and proportion (Hoyles 
& Noss, 1989), and Newtonian physics (Sherin, 2001). For 
diSessa (2017), the basis of the computational literacy 
argument	is	finding	ways	to	unite	subject	matter	and	
computational approaches (as in Turtle Geometry), rather 
than a creating a “forced marriage” between a given topic 
and the use of computation.

On the issue of CS learning supporting the development 
of general problem-solving and higher-order thinking 
skills, research has produced mixed (and mostly negative) 
results. In general, scholarship has shown that positive 
results in these areas require a high involvement from 
teachers and well-developed theoretical foundations 
(Clements, 1990; De Corte & Verschaffel, 1989), as well 
as considerable time investment. In one study, 150 hours 
of experience were needed to generate positive learning 
gains in problem-solving (Liu, 1997). Guzdial noted that this 
issue of programming and transfer is far from resolved, 
especially	when	the	affinities	and	the	unity	of	content	and	
computation are not clear:

 Most people don’t teach programming for transfer, and 
if they did, they would not be able to cover as much of 
programming. I think it is a zero sum game: Teach for 
programming fluency or teach for transferable problem-
solving skills. You cannot get both in the same time. 
(Guzdial, 2017)

CS-inspired mathematics and science practices. Science 
and mathematics as professional practices have been 
deeply transformed by computation, both in terms of the 
core disciplines themselves and the creation of entirely 
new	fields	such	as	bioinformatics,	computational	statistics,	
chemometrics, and neuroinformatics. Efforts to improve 
and modernize the teaching of science and mathematics 
should include computation as a core curricular 

component. Skills that can be developed through CS-
infused science and mathematics include the ability to deal 
with open-ended problems, the creation of abstractions, 
recognizing and addressing ambiguity in algorithms, 
manipulating and analyzing data, and creating models and 
simulations (Weintrop et al., 2016).

Most	of	the	interviewees	also	identified	infusing	
mathematics and science curricula with computation as a 
productive way to bring CS to classrooms. diSessa (2017) 
highlighted that “there are people deeply enmeshed in 
non-CS	disciplines,	yet	sufficiently	expert	with	CS	ideas	and	
practices, to really get this agenda accomplished now.” And 
Grover stated:

  It is very synergistic...computation makes the science 
and the math more real, authentic, and engaging. 
Students see aspects of the discipline that they would 
not see in the static form of learning from a textbook. 
Conversely, computation becomes alive because of the 
context in which it is used. (Grover, 2017)

Some interviewees expressed skepticism as to whether 
there	are	a	sufficient	number	of	available	CS	teachers	
and whether it is possible to carve out space in the busy 
K–8 curriculum for a brand-new discipline. As a result, the 
interviewees noted that retraining science and mathematics 
teachers to add CS to their teaching and generating 
new accompanying CS-infused lesson plans might be a 
more sustainable approach to CSEd. Yongpradit (2017) 
also suggested that enabling teachers to receive dual 
certification	in	mathematics	(or	science)	and	CS	might	be	
a positive alternative approach for addressing the current 
CSEd teacher shortage.

Programming language choice and learning outcomes. 
Pears et al. (2007) examined the impact of programming 
language choice on learning. With the development of 
block-based languages (such as Alice, Blockly, and Scratch), 
research has been showing that child-friendly, block-
based	graphical	programming	offers	many	benefits	to	
young learners when compared to text-based languages 
(e.g., Weintrop & Wilensky, 2015a), particularly in K–8 
classrooms. Other approaches, such as CS Unplugged 
(Hermans & Aivaloglou, 2017), have shown positive results 
in introductory activities even without the use of computers. 
The research on Scratch and Alice are consistent with 
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the design principles commonly expressed by Papert 
(1980) and Resnick (2017). They should be rich enough 
to introduce the fundamental CS concepts, have a small 
enough set of constructs and features to be learnable in a 
few hours or weeks, and allow for a variety of forms and 
domains of personal expression. 

Because richness and simplicity are not easily combined,  
educators need to carefully consider the trade-offs when 
choosing a programming language. Fincher (2015) 
articulated these design principles in more detail, asking 
a crucial question: “How do we know how to reduce the 
complexity of programming languages while not curtailing 
students’ future development in CS?” Weintrop and Wilensky  
(2017) have shown that students may perform better with 
block-based programming, but they see those languages 
as further away from “real” programming, so learning with 
simplified	languages	could	limit	their	future	development	in	 
CS. Fincher cited a 1960s experiment in literacy that created 
a	simplified	English	alphabet	to	facilitate	the	learning	of	 
spelling in elementary school (the “Initial Teaching Alphabet”).  
Students did learn how to spell faster with the new 
alphabet, but could not make the transition to the normal 
alphabet,	and	it	took	them	years	to	unlearn	the	modified	
one.	Fincher	finds	a	similar	conundrum	in	CSEd:	How	can	
we know what to simplify, and how? Despite the work 
of researchers such as Weintrop and Wilensky, more 
studies are needed to understand how and under what 
circumstances	learning	with	block-based	or	other	simplified	
languages transfer to more traditional programming tools, 
and put students on a trajectory for more sophisticated 
experiences in CS. This seems to be one of the main 
research gaps in CSEd, but Resnick noted that the limitation 
of block-based languages is not always a problem:

  It is true that students planning to pursue a university 
degree in CS, or pursue a job as a professional 
programmer, need to make the transition from block-
based languages to text-based languages. But it might 
be	just	fine	for	most	other	students	to	continue	to	
use block-based languages. It depends on the goals 
of CSEd. Research on how to support students in 
progressively enhancing their fluency with block-based 
languages might be just as important as research on 
how to support the transition to text-based languages. 
(Resnick, 2017)

Another very important issue in programming language 
choice	and	design	is	domain-specificity.	For	example,	the	
original LOGO language is especially well-suited for “body-
syntonic” geometry (Papert, 1980). StarLogo and NetLogo, 
designed	primarily	for	modeling	emergent	scientific	
phenomena in which multiple particles interact through 
simple	rules,	is	a	very	good	fit	for	some	content	areas	in	
physics, chemistry, and biology (Wilensky, 1999, updated 
2006, 2017; Wilensky & Reisman, 2006). An increasingly 
productive path for language designers is to tailor their 
languages	to	specific	domains	and	support	expression	and	
problem solving within those domains, instead of creating 
complete languages. This approach has the advantage 
of reducing the complexity of the language and making it 
more readily learnable, even if it reduces their application 
as a general purpose programming environment (see also 
Wilkerson-Jerde, Wagh, & Wilensky, 2015).

7.3 Teaching and learning

Effective teaching and learning requires instructors to 

strike a balance between structured-activities and student 

exploration. Teachers need special training for CS teaching 

to help students notice connections to disciplinary content 

and make sure CSEd takes place in an environment 

conducive to collaborative work.

Teaching and learning refers to methods and the activities 
used to help students master the content and objectives 
specified	by	a	curriculum.	It	encompasses	the	activities	
of both teachers and students in terms of pedagogical 
techniques, sequences of activities, and ordering of topics. 
In addition to the cognitive and developmental issues, 
researchers have also focused on identifying productive 
CS-specific	teaching	and	learning	strategies	and	identified	
significant	differences	between	CS	and	other	disciplines,	 
in that:

•  CSEd requires students to use computers and due to 
logistical or design issues, often demands that students 
share the same equipment and collaborate.

•  CSEd frequently involves long-term, complex projects 
that span multiple classes and could take a toll on 
students’ cognitive load.
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•  At the K–8 level, some researchers warn that teachers 
must consider the availability of computers in students’ 
homes when assigning homework outside of class. 
While teachers want to engage students and motivate 
them to continue working on projects, they need to 
know if students have the needed infrastructure at 
home. Consequently, models that rely heavily on 
instruction during class and independent work at home 
might not work with CS for all students.

The	following	sections	address	some	of	the	findings	
regarding pedagogical elements.

Pedagogical strategies and the role of teachers in CS 
classrooms. Some studies suggested that self-guided 
exposure to computing without purposeful teacher or 
curricular facilitation results in little learning (Pea, Kurland, 
& Hawkins, 1987). Clements and Meredith (1993), for 
example, explain that despite the apparent connection 
between programming and mathematical thinking, many 
students tend to rely on purely visual cues given by the 
computer to infer rules and avoid analytical work (see also 
Hillel & Kieran, 1987). And while in Clements’ study, visual 
problem solving helped students with math problems in 
the beginning, over time it prevented them from arriving at 
mathematical generalizations unless teachers presented 
them with tasks that required an analytical, mathematical 
approach (Clements & Meredith, 1993). Grover and Basu 
(2017) found that exploratory activities in block-based 
programming environments without competent teacher 
facilitation do not address misconceptions about basic 
CS concepts. Other researchers have found that learning 
mathematics using programming tools does not lead to 
substantial learning unless there is effort to direct students’ 
attention to mathematical analysis (Hoyles & Noss, 1992). 
Grover, Pea, and Cooper (2015, 2016) found that even 
when students go through a designed curriculum in block-
based programming environments, they struggle with 
concepts such as loops (terminating based on a Boolean 
condition) and variables much more than other concepts. 
However, with the correct guidance, computer-based 
exploration in mathematics shows promise compared 
to work in other media. Hoyles, Sutherlands, and Noss 
(1991) found that, compared to a paper and pencil or 

spreadsheet activity, a well-designed collaborative unit with 
computer programming led students to more frequently 
use formal mathematical language. However, Margolis 
(2017)	mentioned	that	there	is	a	significant	variance	in	how	
well teachers can do this facilitation work, and that the PD 
programs that foster that kind of competent guidance are 
often inaccessible for less affluent public schools. 

Cooperation, collaboration, and pair programming. 
Research indicates that students seem to cooperate and 
collaborate more when working with computers because 
they often disagree and therefore spend more time 
discussing their solutions. Most of the disagreements 
detected by researchers were about ideas rather than 
social issues. Therefore, productive, on-topic conflict has 
been	identified	as	a	positive	aspect	of	programming	in	
classrooms (Lehrer & Smith, 1986; Nastasi, Clements, 
& Battista, 1990). Also, some online programming 
environments now make it easier for learners to “see inside” 
their projects, remix, and build upon one another’s projects. 
Some environments, such as NetsBlox, even allow for 
collaborative programming, where multiple students can 
edit the same project synchronously. These tools have 
important implications for research and practice.

Pair programming is a widely-used and well-researched 
strategy that also builds on collaborative practices. 
This pedagogical practice derives from the literature on 
collaboration	and	more	specifically	on	computer-supported	
collaborative learning (Suthers, 2006). Collaborative 
computer programming has drawn considerable attention 
since research has shown that 70% of programmers’ 
time is spent in collaborative endeavors, while in most CS 
courses (and their assessments) students work alone. In 
pair programming, the “driver” types at the computer and 
the “navigator” completes a variety of tasks. Ideally, there 
is strong communication between drivers and navigators 
and roles are constantly switched. Results of studies 
of pair programming indicate that students working 
this way produce better quality code, perform better on 
graded assignments, and experience higher levels of 
self-reported	satisfaction	and	confidence.	The	research	
on pair programming also raises concerns with regard to 
its use in K–8 environments. First, researchers have tried 
to incentivize collaboration (students tutoring each other 
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and accomplishing tasks together) but have struggled with 
supporting cooperation (working on different parts of the 
assignment then merging the work later). This is a concern 
because students may specialize in different tasks, lose 
perspective of the whole, or not venture into more complex 
parts of the project. Another concern has been the tendency 
for some individuals to dominate the work. According  
to Shapiro:

 Research on pair programming in K–12 shows that 
while	it	can	be	beneficial,	it	can	also	exacerbate	power	
dynamics that can marginalize students. (Shapiro, 2017)

Finally, studies have shown that pair programming 
should be explicitly taught in teacher preparation programs 
because it provides advantages for CSEd instructors 
by incentivizing students to help each other without 
necessarily relying on instructors except when necessary 
(Bevan, Werner, & McDowell, 2002; McDowell, Werner, 
Bullock, & Fernald, 2002; McDowell, Werner, Bullock, & 
Fernald, 2006; Ruvalcaba, Werner, & Denner, 2016).

Scaffolding complex programming tasks. Guzdial (1993) 
showed how different parts of the programming process 
can be scaffolded and discussed the ways that students 
chose to use scaffolds. One of the well-known approaches 
to	scaffolding	is	subgoal	labeling.	A	well-known	difficulty	
in science education (especially when using worked 
examples) is how to help students focus on the structural 
features	of	a	problem	instead	of	superficial	aspects	(Chi,	
Feltovich, & Glaser, 1981). Anderson, Farrell, and Sauers 
(1984) found that the same happens in CS instruction when 
using worked examples: Students might not understand the 
fundamental and structural characteristics of the task at 
hand and might get lost in contextual elements. Additionally, 
the technique of worked examples in CSEd could increase 
cognitive load (Lister, 2011) because it requires students to 
simultaneously learn to program, learn a new programming 
language, try to problem solve, and work in an environment 
that is different from normal classrooms (Morrison, 
Margulieux, Ericson, & Guzdial, 2016). 

In the more general educational research literature, the 
technique of using worked examples and breaking them 
up into subgoals improved students’ performance, but 
only	when	structural	versus	superficial	information	about	

the task were clearly differentiated (Catrambone, 1998). 
Researchers have adapted this approach to computer 
programming with positive results. An influential study 
compared conventional worked examples and subgoal-
labeled work examples. Instead of a simple set of step-
by-step instructions (e.g., “click on block A,” “drag block 
A,” “connect block A to block B”), the worked examples 
condition provided a simple label before each group of 
instructions (e.g., “handle events,” “set properties,” “create 
new objects,” “set output”) alongside information about 
the purpose of the subtask. Students in the subgoal label 
condition performed better in every measure of problem-
solving performance (Margulieux, Guzdial, & Catrambone, 
2012; Morrison et al., 2016).

7.4 Teacher development

Integrated systems of teacher certification, PD, and 

incentives should be in place and inclusiveness should be 

a priority in both pre-service and in-service programs. 

Ultimately, the interactions between teachers and students 
in individual classrooms are a determining factor in whether 
students learn CS successfully. Thus, it is not surprising 
that the interviewees expressed the belief that teachers 
are the linchpin in any effort to implement or change CSEd. 
To truly support implementation of CSEd, the preparation, 
effective development, and retention of CSEd teachers will 
need to be prioritized. 

Teacher development was a central concern for 
most interviewees. Clancy, Margolis, and Yongpradit 
(2017) highlighted the challenges in building the CSEd 
teacher workforce for CSEd, and noted the need for 
teacher	certification,	training	programs	based	on	these	
certifications,	and	incentives	for	teachers	to	seek	these	
qualifications.	Guzdial	(2017)	highlighted	the	importance	of	
pre-service teacher development as the most viable way to 
sustainability.

The need for equity in teacher development was also 
highlighted, since more affluent schools are more capable 
of offering high-quality programs. Interviewees noted that it 
is not enough to expose teachers to CS content. Teachers 
need time to practice inclusive CS and these pedagogies 
should be interwoven into the entire teacher preparation 
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program. Margolis (2017) also raised the need to educate 
teachers regarding biases, so that they can reflect on belief 
systems and perceptions about which students can excel 
in computing, and how these beliefs would impact their 
relationships with students.

In general, there was concern about the rapid scaling 
of several CS initiatives and the capacity to prepare 
thousands of teachers adequately in a very short 
time. The interviewees argued that scaling too quickly 
disproportionately impacts underserved communities and 
populations that are historically excluded from STEM. 

Margolis was particularly concerned with making 
equity a core tenet in teacher development, mentioning 
that	in	her	research	she	encountered	significant	variability	
among teachers in their capacity for guiding deeper 
cognitive thinking. She found that teaching was particularly 
productive	when	teachers	identified	the	specific	CS	
concepts for the students while they were learning them 
and discussed how they could relate the concepts to other 
areas of knowledge. The capacity to competently guide 
students in this way was found to be a predictor of student 
learning but it varied considerably among teachers. Not 
surprisingly, teachers in less affluent areas were found 
to be the least prepared to enact these strategies in the 
classroom, in part because their districts had less funding 
for teacher PD. Margolis adds:

  Not only do teachers need to be introduced to the 
CS content, but they need to have time practicing 
pedagogies that are aimed at creating an inclusive CS 
learning environment, building on the assets, interests, 
and motivations of traditionally underrepresented 
students. Also, CS teacher PD must have equity and 
inclusion woven throughout everything that happens in 
PD, not just isolating this issue to a discrete one-hour 
discussion. For instance, as teachers are experiencing 
teaching lessons during PD, the other teachers who 
are in the roles as students or observers should be 
reflecting on their own experiences of inclusion (or not), 
thinking about their own students in their classrooms, 
and what works (or does not) to ignite the interest of all 
students. Also, teachers need time, and a safe learning 
environment, to reflect on all the biased belief systems 
associated with which students can and cannot excel in 
computing, to reflect on their own belief systems, and 

how belief systems impact their relationships with the 
students in their classrooms. Traditionally CS education 
has not been a place where these types of discussions 
or reflections have taken place, but they must if we are 
to broaden participation in computing. (Margolis, 2017)

Guzdial also emphasized the importance of pre-service 
teacher development:

  We do not reach sustainability with in-service teacher 
development, though that is where most efforts are 
today. Pre-service is the sustainable path to a supply of 
well-prepared teachers, and it is the path that the rest of 
K–12 disciplines follow. (Guzdial, 2017)
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8. Learning Progressions and  
Learning Issues

Learning progressions are descriptions of successively 
more sophisticated ways of thinking and how learners 
develop understanding of key concepts and practices 
within and across multiple grades. Learning progressions 
can be used to help designers build coherent curriculum 
and align standards, curricula, and assessments across 
grades and grade bands. This section covers the key 
findings	in	the	areas	of	learning,	cognition,	and	learning	
progressions, discussing mental models, misconceptions, 
and developmental approaches to CSEd.

8.1 Mental models of what computers do:  
the “notional machines”

Having an apt mental model of what computers can and 

cannot do, and how they execute code is a prerequisite 

for effective CS learning. Educators and designers should 

therefore be careful with the analogies and metaphors 

used to explain what computers do. Young learners have 

difficulty tracking events, variables, and states that are  

not visible.

In school subjects like mathematics or physics students 
can	superficially	solve	problems	with	little	conceptual	
understanding	by	figuring	out	the	variables	of	interest	and	
plugging	values	into	well-defined	formulas.	However,	in	CS	
students need to have a well-developed mental model of 
what a computer does when it executes programs, or “an 
abstraction of the computer that they can use for thinking 
about what a computer can and will do” (Guzdial, 2015). 
Benedict du Boulay (1986) called this abstraction a “notional 
machine.” To understand notional machines is not to simply 
know what computer hardware is. Notional machines are 
language-dependent, since each programming language 
behaves in a different way and demands different reactions 
from the computer. Guzdial stated that understanding the 
correct notional machine for the language at hand is a key 
learning goal within CSEd, and indeed there is considerable 
evidence that the level of development and correctness of 
children’s notional machines predicts how well they learn  
to program. 

It	is	difficult	for	young	learners	to	develop	an	accurate	
understanding of notional machines because they are  
quite removed from everyday experiences (du Boulay, 1986; 
Guzdial, 2015; Sorva, 2012). As Guzdial explained:

  The notional machine is unnatural for us. The 
inhumanness of computers makes them harder to 
understand…The computer is a non-human agent 
that	is	doing	what	was	specified,	and	not	what	was	
intended. (Guzdial, 2017)

Researchers have conducted extensive studies on how 
students form mental models of how computers execute 
code. They have concluded that these models go awry when  
students’ intuitive understandings about programing go  
unchecked, or when teachers present students with 
inadequate metaphors (Ben-Ari, 1998; Perkins, Schwartz, &  
Simmons, 1988). For example, the intuition that programming  
is a conversation with a human-like creature—capable of 
inferring meaning that is not explicit in the code—is a well-
known source of problems (Bonar & Soloway, 1983). Pea 
(1986) found related misconceptions around sequence of 
execution and parallelism (all lines of code active at the 
same time), intentionality (the program has goals and can 
see what is happening to itself), and the notion of a “hidden 
mind” inside the machine. The lack of understanding about 
notional machines generates other well-documented 
difficulties	in	learning	CS,	like	how	instructions	are	executed	
in the state created by the previous instructions, or that 
variables can only have a single value at a time (du Boulay, 
1986; Sajaniemi & Kuittinen, 2008; Smith & Webb, 1995; 
Sorva, 2012). 

8.2 Misconceptions and learning challenges in 
specific programming constructs

Teachers should be aware of CS misconceptions and 

interactions with other disciplines when they design and 

deliver instruction. For example, the way students learn 

about variables in math might affect their understanding of 

variables in CS. In addition, the accomplishment of simpler 

CS tasks does not entail the overcoming of programming 

misconceptions.
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du	Boulay’s	work	was	one	of	the	first	systematic	attempts	
to	understand	the	specific	issues	and	misconceptions	of	CS	
learning. This work revealed that learning to program was 
much harder than anticipated by the pioneers of CSEd. Even 
at the college level, several large scale international studies 
showed that introductory courses were largely failing to 
generate the desired learning outcomes (Lister et al., 2004; 
McCracken et al., 2001). To try to understand the problem, 
du	Boulay	(1986)	systematized	students’	difficulties	into	five	
overlapping domains: 

1. General understanding of what programs are and what 
can be done with them; 

2. Students’ model of the computer as it relates to 
executing programs (notional machines); 

3. Notation, syntax, and semantics of programming 
languages; 

4. Structures, schemas, and plans; and 
5. Pragmatics, the skills of planning, developing, testing, 

and debugging. 

This categorization was useful because it was found 
that	“the	shock	of	the	first	few	encounters	between	the	
learner and the system are compounded by the student’s 
attempt	to	deal	with	all	these	different	kinds	of	difficulties	at	
once” (du Boulay, 1986, p. 284). This signaled to instructors 
that these multiple dimensions had to be dealt with in order 
to improve teaching and learning.

This seminal work led researchers to go deeper into  
these	different	categories,	detecting	difficulties	involved	
in	learning	each	of	the	five	core	CS	domains.	For	example,	
Spohrer and Soloway (1986) showed that loops and 
conditionals generate more bugs than other types of 
operations (such as input and output). Soloway, Adelson, 
and Ehrlich (1988) found that novices preferred a “read 
then process” approach to writing loops rather than a 
“process then read” one because internal changes in 
the system are invisible to students. Samurçay (1989) 
showed that students are better able to update than to 
initialize variables, and Lewis (2012) found that debugging 
performance in middle schoolers was more correlated 
with their understanding of the system’s state than with 
knowledge about how to debug. Other studies looked at 

assignments,	print	statements,	control	flow	(Sleeman,	
Putnam, Baxter, & Kuspa, 1986), parameter passing 
(Fleury, 1991), and recursion (Bhuiyan, Greer, & McCalla, 
1990; Booth, 1992; Kahney, 1983), always discovering new 
classes and variations of students’ misconceptions. Juha 
Sorva’s review of this research actually found as many as 
162 programming misconceptions and obstacles (2012). 
diSessa (1985) generalized the notion of “notional machine” 
to	“structural	models,”	and	also	identified	two	other	
classes of models (“functional” and “distributed”) that are 
important for understanding programming. He connected 
these considerations with the design of comprehensible 
and flexible computational systems. The co-presence 
of multiple models and their interactions provides an 
alternative to stage-like developmental approaches to 
learning programming (as described in the next section).

In general, these pioneering studies from the 1980s and  
1990s reported that, surprisingly, successful completion  
of simple programming tasks is not correlated with the  
understanding of even simple core CS concepts: it is possible  
to complete these tasks without correct conceptual 
understanding	of	key	programming	constructs—a	finding	
that has been attributed to the lack of appropriate mental 
models about what computers do (Sorva, 2012). 

More recently, researchers have focussed on 
understanding in detail how students learn basic CS 
concepts.	Stefik	and	Siebert	(2013)	studied	programming	
language syntax and how it affects learning. They created a 
language called “Randomo” that used random symbols and 
keywords and tested it against a variety of well-established 
languages. They found that languages using more 
traditional syntax (such as C or Java) were as hard to learn 
as Randomo, but that languages with more modern syntax 
and more intuitive keywords (such as Python and Ruby) 
were	significantly	easier	to	learn.	The	authors	concluded	
that the choice of keywords (e.g., “repeat” to start a loop 
instead of the less intuitive “for”) is highly consequential for 
novices (see also Robins, Rountree, & Rountree, 2003). 

Grover and Basu (2017) examined sixth, seventh, and 
eighth graders using a block-based language and reported 
unexpected problems related to variables. They found that 
a	significant	number	of	students	did	not	understand	that	
a variable name could be longer than one character, so 
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when they encountered long variable names, some of them 
believed that the name of the variable was a command. 
The authors attributed this misconception to an interaction 
between the way students learn math and CS in school, 
since in math, variables are always represented as a single 
letter and stand for an “unknown.”

Franklin	and	collaborators	(2017)	confirmed	that	there	
is a mismatch between programming environments and 
prior mathematics knowledge regarding the inclusion of 
negative numbers and decimals for upper elementary 
learners. They also found that there can be considerable 
differences in preparedness for learning CS between the 
fourth	and	sixth	graders	they	studied.	Specifically,	younger	
students	(fourth	and	fifth	grade)	found	it	challenging	to	
initialize	variables,	and	sixth	graders	were	significantly	
more precise at navigating in two dimensions than their 
younger counterparts. There is also a growing body of 
research showing that visual block-based tools could be 
more effective and engaging for students. However, there 
is still no agreement on exactly how to disambiguate the 
benefits	of	block-based	languages	in	terms	of	how	they	
address problems with syntax, semantics, and mental 
models. Some researchers mention that students “can 
see blocks as inauthentic, which can be demotivating if 
one’s goal is to develop an identity. On the other hand, the 
syntax	benefits	can	reduce	frustration,	which	can	support	
engagement and motivation” (Shapiro, 2017). Researchers 
have been working on ways to scaffold the subsequent 
transition from blocks to text, which was shown to be 
problematic unless the block to text transfer is explicitly 
mediated for (Dann, Cosgrove, Slater, Culyba, & Cooper, 
2012; Grover, Pea, & Cooper, 2014). As a result, researchers 
are successfully experimenting with hybrid environments 
to ensure a smooth transition (Weintrop & Wilensky, 2015a, 
2015b, 2017). These types of studies, which examine 
very	specific	misconceptions	related	to	age	groups	within	
K–8 education, are becoming more common in CSEd 
conferences. Researchers, however, are focused on not just 
detecting those misconceptions, but also looking for ways 
to design instructional strategies to overcome them, as we 
will see in subsequent sections.

8.3 Schema building and developmental 
approaches to CSEd

In K–8 CSEd, students’ developmental stage is a 

determinant of learning outcomes, and teachers must 

help students transition between stages. The acquisition 

of expert-like behavior for CS problem solving involves 

exploring many programming problems and cases and 

building one’s arsenal of schemas.

Several researchers have examined student misconceptions 
and how best to overcome them and have concluded that 
most successful approaches make use of the vast literature 
on cognitive development and learning sciences. Lister, for 
example, proposed using developmental psychology as a 
template for this exploration:

 Piaget’s crucial observation was that children do 
not simply know less than adults, or that children 
believe things that are wrong. Instead, children think 
differently from adults… Adults (including academics) 
inexperienced in teaching children, communicate their 
knowledge in ways that children are not yet ready to 
understand. (Lister, 2016)

Inspired by Piaget’s stages, Lister devised a 
developmental trajectory for CSEd with four levels (2016):

1. Sensorimotor or pre-tracing stage: The novice 
programmer has an incoherent understanding of 
program execution.

2. Preoperational or tracing stage: The novice can 
manually execute (“trace”) multiple lines of code.

3. Concrete operational or abstract tracing stage: The 
novice programmer reasons about code deductively. 
Students show a purposeful approach to writing 
programs.

4. Formal operational: The expert performs at this level. 
Students can reason logically, consistently, and 
systematically. 
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This	approach	is	a	good	example	of	how	findings	in	
education and human cognition can guide CS teaching 
and learning. Based on extensive empirical work in K–8, 
Lister (2016) offered some valuable hints for classroom 
situations—most of which would sound counterintuitive for 
CS instructors unfamiliar with developmental psychology 
and learning research:

•  “As the novice programmer learns, there are periods of 
time where the novice maintains their existing mix of 
stages, even when the novice is taught something new.” 
They “swap between conceptions, correct or otherwise, 
based	on	superficial	aspects	of	the	code	that	happen	to	
be in view at the time.”

•  “Teachers should understand that pre-tracing students 
might have wildly different understandings of basic CS 
concepts, and that it is part of a normal developmental 
trajectory. For example, “Why should a sensorimotor 
programmer believe the ‘=’ sign always means the 
same thing when some symbols in programming (e.g., 
‘*’) change meaning between contexts?”

•  “Using a strategy of “repeat-trace-patch-until-success,” 
preoperational students may eventually succeed in 
producing correct solutions to small programming 
problems, but they will only do so after considerable 
time.” Lister noted that “preoperational programmers 
should only write code when closely supervised.”

The developmental approach surfaces another 
important question in CSEd: How do young students acquire  
expert-like behaviors, and what are those behaviors? To 
answer that question, researchers have analyzed expert 
programmers and tried to distill productive behaviors. Results  
were counterintuitive: whereas some expected that experts 
would always use top-down, systematic approaches to 
problem solving when programming, studies found that 
they use both top-down and bottom-up approaches (Visser, 
1987) and transition between systematic and exploratory 
behaviors. Adelson and Soloway (1985) and Rist (2004) 
tried	to	explain	this	finding	using	the	idea	of	schemas,	
or templates, for recognizing and solving problems. Rist 
claimed that experts, having knowledge of more kinds 
of problems (or richer schemas) can easily pick the right 
strategy	for	a	given	problem,	doing	a	breadth-first	mental	
search. For beginners, “programming problems will be 

unfamiliar	and	involve	slow,	difficult,	and	error-prone…
depth-first	development.	From	an	educational	point	of	
view, the growth of expertise is marked not by adding top-
down strategies to one’s arsenal, but by being able to use 
top-down strategies as a result of growing familiarity with 
problem types and their solutions.” (Sorva, 2012)
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9. Advancing CS Education through 
Research

The interview data and literature pointed to important 
research directions for CSEd. The following sections 
describe	these	directions	and	their	justifications.	They	also	
assess the current CSEd research capacity and inform 
recommendations to strengthen research paradigms and 
the research base itself.

9.1 The current CSEd research base

Important next steps in CSEd research include determining 

how to systematically overcome its challenges and gaps, 

growing the field to match the challenges of large-scale 

implementations, attracting more researchers, making 

their work sustainable in universities, and making research 

deeper, more productive, and faster.

The need for more research to enable successful 
implementation. Guzdial, Shapiro, Margolis, Fincher, 
Sentance, and others were adamant that more research 
funding is needed for CSEd. Fincher also noted that it is 
challenging	to	convince	funding	agencies	to	finance	the	
work because of the uniqueness of CSEd research:

 In the U.K., CSEd research is not seen as “science,” so 
the science funding councils are not appropriate and 
the social science funding councils say scientists don’t 
have the appropriate methodologies, so they won’t 
touch it. (Fincher, 2015) 

According to Guzdial (2017), NSF funding for CSEd is 
mostly provided for curriculum or broadening participation 
rather than for fundamental research on how people learn 
CS: “The kind of work that I have been doing is to look for 
educational psychology principles, and how they apply to 
CS learning. There is no program at NSF that will explicitly 
fund that kind of work.” The interviewees also agreed on 
the need for more stable funding sources and programs 
to support research on the large-scale implementations 
currently underway.

CS	is	a	young	and	rapidly	developing	field,	which	makes	
CSEd unique among traditional school disciplines. CSEd 
is	the	first	new	major	subject	to	roll	out	in	many	school	

districts for decades. The data revealed little agreement 
about what CS topics are important in K–12 education or 
how to address them. There was also no clear consensus 
on how these topics should be introduced to students 
(via either concepts, ways of thinking, or the details of 
specific	programming	languages).	In	addition,	because	
CS languages and tools are constantly changing, it is 
difficult	to	accumulate	relevant	research	results.	For	
example, although there was extensive research on LOGO 
programming in the 1980s and 1990s, it is unclear if 
these results can still be applied today given the different 
programming environments now used in schools. Many 
researchers are trying to make their claims and research 
questions more generalizable and less focused on one 
language but this is still a nascent effort. Fisler, for 
example, had students solve the same problem in different 
languages, trying to determine what results were language-
bound and which were invariant (Fisler, 2014). 

In some cases there are instructional strategies that 
are becoming standard across languages and tools due 
to	an	accumulation	of	evidence	as	to	their	efficacy	in	
different circumstances and contexts (Guzdial, 2015). The 
strategies, however, are not abundant and interviewees 
were unanimous in their contention that we are still far from 
having a solid corpus of research in CSEd (especially in 
K–8) or anything comparable to what exists in mathematics 
or science education. 

The interviews also revealed that there is much more 
research on CSEd in high school and college environments 
than in K–8. This is one effect of the history of disparity in 
funding and challenging research logistics:

•  Large-scale CSEd in K–8 is much more recent than in 
high school and higher education.

•  There is a bias towards research in higher education as  
opposed to K–12 schools as most university professors 
in	CS	departments	find	it	more	convenient	to	research	
their own students. Universities also more readily fund 
studies to improve their undergraduate courses.

•  Obtaining approval from institutional review boards and 
school districts is challenging, especially if there is any 
form of electronic tracking of students’ work, which is 
typical in many modalities of CS research. 

•  K–8 schools and classrooms tend to be smaller and 
thus	comparative	studies	are	more	difficult	to	design	
and have less statistical power.
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•  Despite recent advances, access to computers and 
broadband (crucial for CSEd experiments) in K–8 public 
schools is still uneven.

•  Disciplines such as mathematics and science, with 
their long history in K–8 education, have a substantial 
contingent of trained teachers, teacher training 
programs and materials, and a vast infrastructure in 
schools and districts. Compared to these disciplines, 
the funding and infrastructure for K–8 CSEd and 
research is still exceedingly small.

•  CS teacher development might require a different 
set of strategies. It is commonly assumed that CS 
teachers	need	to	be	proficient	at	writing	software,	but	
Shapiro (2017) noted that “that may not be the case. 
Mathematics and science teachers are required to have 
degrees in the discipline. That may not be necessary 
for	CS:	What	constitutes	sufficient	CS	training	may	be	
different than what has historically been required for 
those disciplines.”

Fortunately, CSEd conferences are now beginning to 
focus more on K–8 education uncovering a new class of 
misconceptions, pedagogies, tools, and learning issues (the 
following sections review several of these papers).

Research into CS concepts. Unlike physics and biology, CS 
does not yet have stable concept inventories with agreed 
upon	concepts	and	age-appropriate	metrics	or	a	sufficient	
repository of language-neutral assessment (Taylor et 
al., 2014; Tew & Dorn, 2013). As a result, some types of 
research designs are very challenging in CS. In addition, 
CS is not a natural science like physics and so it is more 
difficult	to	create	concept	inventories	in	CS	given	that	there	
is no consensus regarding the lists of concepts. The most 
well-established concept inventory in physics (the Force 
Concept Inventory, Hestenes, Wells, and Swackhamer, 1992) 
took	years	of	refinement	and	testing.	Developing	such	
concept inventories for CS, however, would enable research 
designs that compare different pedagogies for the same 
content topics or concepts. So while many researchers and 
national organizations are trying to model the CS standards 
after the Next Generation Science Standards (NGSS), some 
contend that there are limits to such a process because the 
epistemology of CS is uniquely different.

Research into the design of programming tools and 
experiences. Many interviewees pointed out the lack of 
a productive feedback loop from empirically supported 
findings	to	the	design	of	programming	tools	and	experiences:

 
  There is a lot of myth and a lot of happy stories but  

in terms of best practices, we have very little at K–8. 
There are certainly a lot of people using Code.org 
tutorials or Scratch but there’s very little evidence about 
what happens and the quality of the learning in those 
kinds of settings. (Shapiro, 2017)

For example, it has been known for years that variable 
initialization	in	most	block-based	languages	is	difficult	and	
the interface designs do not work well. Although this has 
been known for quite some time, language designers do not 
seem	to	use	evidence	to	drive	tool	refinement,	claiming	that	
the development of CSEd software tools are rarely guided 
by systematic research into the kinds of concepts that are 
intrinsically challenging, and which of those challenges 
are about the particularities of the tools that we are using 
(Shapiro, 2017).

While	this	is	consistent	with	our	review	of	the	field,	
it seems that this reflects a larger issue of a lack of 
productive connection between researchers, tool designers, 
and implementation developers (see, as an example 
of a cycle of design-based research, diSessa & Cobb, 
2004; Ericson, Rogers, Parker, Morrison, & Guzdial, 2016). 
Weintrop and Franklin are examples of scholars who are 
conducting	rigorous	studies	and	finding	out	more	about	
how to redesign tools and their use. Other researchers, 
however, feel powerless in the face of the big organizations 
that	are	driving	CSEd	today.	It	is	difficult	to	know	to	what	
extent the major initiatives that have been funded would 
fundamentally change their programming languages or 
pedagogical approaches when faced with counter evidence 
from research. Many researchers expressed concern that 
their work would be just “noise,” and that most of the design 
and high-level strategy decisions tend to be driven by other 
agendas. Establishing the routine of internal and external 
evaluations to validate and inform program changes and 
having venues and public spaces in which the results 
can be communicated and discussed would help ensure 
evidence is heard and counted.
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Research into tools for formal learning environments. 
Despite the widespread use of several CS tools in formal 
learning environments, the interviewees articulated the 
following shortcomings:
•  Most tools are not designed for classroom use and 

only a few have classroom management features or 
dashboards. Even fewer have tools for managing and 
assessing complex project-based work, which is a 
labor-intensive task in CSEd. Developing new tools or 
incorporating these functionalities into current software 
would greatly help teachers better manage classrooms. 

•  There	are	only	a	few	tools	that	easily	and	efficiently	
facilitate the incorporation of CS into other disciplines. 
Apart from some well-established projects such as 
NetLogo (for science classrooms), teachers in arts, 
science, history, social studies, or even mathematics 
would	have	a	challenging	time	finding	classroom-
ready tools for CSEd (with some exceptions, such 
as Bootstrap for mathematics or physics). The 
development	of	these	tools	would	be	a	significant	
contribution to K–8 CSEd.

•  Physical computing tools such as Arduino are popular 
in schools but are not designed for children. However, 
child-friendly platforms such as Lego Mindstorms and 
Hummingbird as well as low-cost options such as 
Microbit, Makey Makey, and Gogo Board are starting  
to make their way into classrooms. Resnick, Horn,  
and Shapiro believe that this is an important and 
fertile area for development and that there are many 
unexplored opportunities for programming objects in 
the physical world. 

Research into other forms/paradigms of programming 
(machine learning, concurrent programming). The 
majority of software tools used today in K–8 employ the 
block-based programming paradigm (e.g., Scratch, Alice, 
Blockly-based languages), but interviewees mentioned 
several new and emerging approaches to programming 
that are still far from classrooms. These approaches 
include parallel programming, machine learning, flow-based 
programming, spatial computing, and “programming by 
example.” Researchers also mentioned the importance of 
bringing new ways of interacting with the world into CSEd. 
These could include programming physical devices, web 
services, and new media forms. Traditional funding sources 
such as the National Science Foundation do not typically 

fund the development of software tools. Consequently, 
several interviewees stressed the need for ongoing funding 
streams for language/tool/curriculum development, so that 
the	tools	of	the	field	evolve	alongside	CS	and	help	diversify	
students’ experiences.

Research into CS in the arts/creative computing. 
Interviewees pointed to a lack of tools for the “A” in 
STEAM learning (STEAM stands for science, technology, 
engineering, art, and mathematics), noting that there is an 
overwhelming concentration of resources in “STEM” tools 
and little funding or development for tools for the arts or 
creative expression9 and this impacts what happens in 
classrooms. The LilyPad platform is an exception that 
provides indications of how important such developments 
could be (Buechley, Eisenberg, Catchen, & Crockett, 2008). 
Seed funding for tools and creative computing and arts 
was therefore posited as a productive direction for CSEd 
(Buechley, 2017; Margolis, 2017; Shapiro, 2017).

9.2 Developing a new strategy for CSEd research

Developing a new research paradigm for CSEd could help 

solve some of the challenges outlined in this report. To 

get there, we need more attention placed on making CSEd 

research a more stable and well-funded enterprise that will 

help to advance the field for years to come. 

Defining a unique research paradigm for CSEd. The 
definition	of	a	CS-specific	education	research	paradigm	
seems	to	be	a	first	and	necessary	step	toward	establishing	
CSEd as a stable research enterprise. This paradigm for 
CSEd research should replicate the rigor and methods 
of mathematics and science education, educational 
psychology, and learning sciences since many of the 
findings	reported	in	CSEd	research	are	not	unique	to	CS	
as a domain and have long been studied in educational 
and cognitive research (Fincher, 2017; Sentance, 2017). 
Also, learning theories and pedagogies from the learning 
sciences could be especially useful as those take into 
account both cognitive and socio-cultural aspects of 
learning (Grover, 2017).

	9 Some	existing	tools,	such	as	Scratch	or	Alice,	allow	for	the	use	of	multimedia,	
graphics, and other tools for expression, but the general focus in CSEd is still 
concentrated in STEM disciplines.
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There	are,	however,	significant	differences	between	CS	
and these disciplines. Mathematics and science education 
have a longer history and a more stable set of topics and 
tools. The laws of physics are not changing anytime soon 
and the representational forms in mathematics (such as 
algebra, or differential equations) typically take centuries to 
change.	Conversely,	being	a	“science	of	the	artificial,”	CS	 
content and tools can change radically in just a few years 
(Shapiro, 2017). Programming languages as we know 
them now could be radically transformed in 10 years, 
making	much	of	the	narrower,	language-specific	research	
obsolete (Horn, 2017). Mainstream programming will likely 
incorporate new paradigms (such as machine learning) 
making traditional coding less relevant. Consequently, 
simply transporting research and curricular frameworks 
from	other	disciplines	is	an	insufficient	strategy	given	the	
unique characteristics and epistemologies of CS. A crucial 
task	for	researchers	and	practitioners	in	the	field	will	be	to	
adapt existing paradigms and frameworks to create the 
pillars of a robust research and deployment program. The 
following sections provide some of the details involved in 
this adaptation process.

CSEd should be a stable, academically valued, and 
well-funded enterprise. As Guzdial (2017) pointed out, 
the number of CSEd graduate students in the U.S. is 
very small (previously estimated around 20). Very few 
computer science departments have tenured professors 
that do research exclusively on CSEd. Research on CSEd 
is	not	valued	as	much	as	pure	CS	fields	for	tenure	and	
promotion, and there is only one chaired professor in the 
country dedicated to the topic. This lack of incentives 
relegates CSEd to a secondary activity for CS professors. 
CSEd-centric federal programs such as NSF’s Broadening 
Participation in Computing Alliance Program (BPC-A) 
depend upon vocal leaders within the government and the 
NSF, and these programs are not permanent. For example, 
the NSF’s Cyberlearning and Future Learning Technologies 
(Cyberlearning) program, which has funded many CSEd 
projects since 2011, was phased out in 2017; and the 
STEM+Computing program which funded research focused 
on integrating CT into STEM learning has been phased 
out after three years in 2018, with programs such as 
CSforAll:RPP being given precedence. 

The interviewees pointed out that in many CS 
departments, CS professors downplay the importance of 

educational research for CS instruction (Sentance, 2017). 
And because CS is still an elective discipline in most 
countries including the U.S., schools of education place 
less value on CS than on mainstream disciplines such as 
language arts or mathematics. As a result, CS or Education 
Ph.D.	students	specializing	in	CSEd	have	a	difficult	time	
finding	tenure-track	positions	in	both	types	of	schools.	
diSessa mentioned the example of physics education as a 
possible model:

 Twenty years ago, physics education was downplayed 
and of low status in physics departments. Now there is 
a recognizably important set of places where physics 
education has taken deep root in physics departments. 
This all takes concerted effort and a rather long 
timescale. This should be a project of persistent 
concern, effort, and funding. There is also a movement 
concerning “discipline-based research” in education, 
where	various	discipline	specific	faculties	are	trying	to	
find	ways	to	generalize	and	combine	insights.	(diSessa,	
in press)

Interviewees were adamant as to the need to incentivize 
universities to create those programs and fund them in  
sustainable ways. One concrete suggestion was the creation 
of	five	CSEd-endowed	chairs	at	prestigious	universities.	Such	 
chairs would cost between $1–2 million each, but since the 
endowed professors could be expected to fundraise on their 
own after the initial funding, the impact of such an initiative 
could last for 20 or 30 years at a very low cost.

Creating an achievable, innovative, and actionable 
research agenda for CSEd for the next decade. Mirroring 
the content coverage achieved by science or mathematics 
education (SMEd) research does not seem to be a 
productive path for CSEd given disciplinary differences. It 
will be impossible to research the learning of all important 
CS concepts for all age groups quickly enough to guide 
the several large-scale implementations that are now 
underway. Along the same lines, the content of CS itself 
changes more frequently than that of other disciplines. A 
more productive path would therefore be to bring together 
educators and researchers with diverse perspectives to 
create a paradigm that reflects the uniqueness of CSEd 
and supports a long-term research program. This paradigm 
would differ from science education. For example, while 
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it is almost impossible to automate data collection for 
education research in a traditional science lab, it is relatively 
easy to instrument programming environments to log 
users’ actions as they program (even though there are still 
challenges such as privacy and long-term data tracking). 
These tools could expand the types of studies possible in 
CSEd and reduce the need for, and prevalence of, controlled 
studies with just a few dozen students. Instead, such tools 
would enable less costly studies with more subjects and 
greater statistical power.

Some interviewees, however, expressed concern over 
the optimism for learning analytics. diSessa, Shapiro, and 
Resnick (2017) noted that previous efforts on the use of log 
files	for	understanding	student	learning	in	CS	and	science	
education generally were shown to have more limited 
usefulness than initially imagined. The interviewees were 
also concerned with the rise of automated assessments as 
a possible byproduct of these instrumented programming 
environments due to their low cost and novelty, and with the 
possibility that automated techniques would overshadow 
deeper types of students assessment (e.g., portfolios) 
that have been shown to be more informative and useful, 
especially at the K–8 level. They maintained that while 
automated techniques might be useful for some types of 
research, their use for direct student assessment should be 
viewed with extreme caution. 

There are other types of data and usage strategies 
that would be important in the creation of a CSEd research 
paradigm. When students are working on a CS project, 
their thinking and debugging processes are often directly 
observable. This opens up possibilities of very detailed 
qualitative, microgenetic studies on the learning of CS. The 
fact that CS work is often done in a project-based fashion 
also creates new possibilities for more holistic measures 
such as portfolios or artifact analysis.

The design cycles in SMEd are quite long because the 
most typical research designs used in these disciplines 
require a large amount of time for implementation, data 
collection, design, and redesign. Also, the content in SMEd 
is relatively stable. In CSEd, it might be that research and 
redesign will take place in much shorter cycles, following 
a design-based research approach (Horn, 2017; Shapiro, 
2017). SMEd are also very connected to traditional research 
paradigms from educational psychology and ethnographic 
methods. It will be essential to incorporate those methods 
into CSEd, but as studies increasingly incorporate 

automatically collected datasets and tools from machine 
learning, it will be crucial to come up with ways to combine 
these diverse data sources in meaningful ways. This 
amalgamation will require training for CSEd researchers to 
enable them to incorporate data mining, design, cognitive 
science, and human computer interaction.

Given all these characteristics of CSEd research, it 
might	be	that	the	ultimate	goal	of	the	field	will	not	be	to	
have answers for teaching each concept at every grade 
level, but rather a set of more general and adaptive 
principles and very agile tools and methods to test 
pedagogies, tools, and curricula in a more iterative way 
than other disciplines. Consequently, a better short-term 
agenda	for	CSEd	might	be	not	to	do	“definitive”	studies	
on particular concepts such as conditionals or loops, but 
instead to create infrastructures, tools, and methodological 
paradigms that could be as adaptable as CS itself and could 
accommodate well-established mixed-methods educational 
research frameworks such as design-based research and 
action research. Implementing this kind of solution would 
require investing not only in empirical research, but also in:

•  The instrumentation of current programming platforms, 
allowing data to be automatically collected (respecting 
institutional review board (IRB) regulations and privacy 
concerns) and the creation of software front ends 
as easy to use as SPSS or Excel that would allow 
educational	researchers	to	analyze	large	CSEd	logfiles	
and datasets.

•  The creation of common data repositories to allow 
standardization, replication, and reuse of data. For 
example, such a repository could mimic Carnegie 
Mellon University’s DataShop and be expanded to 
include qualitative data, interviews, protocols, and 
coding schemes. This would allow multiple researchers 
to use the same dataset to run multiple studies on 
CSEd, or for some research groups to specialize only 
in data analysis from secondary sources (an approach 
that has been very productive in economics and many 
other disciplines).

•  Definition	of	diverse	and	inclusive	research	paradigms	
encompassing a variety of methods, from data mining 
to holistic measures such as portfolios, tackling topics 
that still invite further research such as conceptual 
learning, learning progressions, general CS skills, and 
studies on the growth of computational literacies.
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•  Understanding the applications, limitations, and 
potential combinations of multiple data types and 
analysis techniques, from data mining to ethnographies, 
giving all research traditions an appropriate degree of 
status and voice.

•  Creation of training programs (boot camps, graduate-
level courses) for current researchers or doctoral 
students to learn new qualitative and quantitative 
research methods.

•  Special events and PD programs for popularizing 
research results to schools and practitioners, in which 
CSEd researchers would also get more familiar with 
well-established educational and research paradigms.

10. Summary of Findings

The year 2017 marked the 50th anniversary of the LOGO 
programming	language.	In	just	five	decades	an	entirely	new	
domain of knowledge evolved from an idea in the minds of 
a few visionaries to national public policy. And while CSEd 
is a relatively new discipline with a less substantial research 
base, there is much reason for optimism. Ensuring that we 
continue this progress, however, requires the commitment, 
work, and flexibility of a large number of stakeholders. We 
are now facing the growing pains intrinsic to progressing 
from pilot projects to large-scale implementations and we 
must look and work beyond these growing pains to ensure 
that	CSEd	fulfills	its	educational	promise	in	sustainable	and	
equitable ways. 

CS learning is challenging but it also offers teachers 
and learners the opportunity for transformation. It requires 
students to:

•  understand what computers are and how they run 
programs (e.g., Ben-Ari, 1998; du Boulay, 1986;  
Guzdial, 2015); 

•  interpret, trace, and debug code (Lewis, 2012;  
Lister, 2016); 

•  steer away from several categories of misconceptions 
(Pea, 1986; Sorva, 2012); 

•  manage cognitive load (Lister, 2011; Margulieux  
et al., 2012); 

•  understand counterintuitive, obtuse notations and 
conventions in some programming languages  
(Stefik	&	Siebert,	2013);	

•  know content from other disciplines (e.g., reading, 
arithmetic, algebra, variables) and understand their 
overlaps and contradictions with CS (e.g., Franklin et al., 
2017; Grover & Basu, 2017); and 

•  work in long-term projects and environments that are 
different from normal classrooms (Morrison et al., 2016). 

Despite these challenges, CSEd offers many 
advantages and the potential to transform learning 
environments and school work. CS includes algorithms, 
design, data, making, creativity, and personal expression. 
An emerging approach to CSEd also facilitates productive 
collaboration in the classroom, connects to personally 
meaningful aspects of the lives of students, allows for 
new types of knowledge and assessments to be valued 
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in schools, boosts the potential of project-based learning 
approaches, and opens possibilities of innovative ways to 
organize learning environments (e.g., Berland et al., 2013; 
Blikstein et al., 2014; Brennan, 2013; Buechley & Eisenberg, 
2008; diSessa, 2000; Sherin, 2001; Turkle & Papert, 1990). 
Addressing and harnessing these advantages is important, 
particularly for K–8 learners, as our world becomes more 
technological and digital, and equitable participation 
requires CS fluency. This makes CSEd necessary in K–8 not 
just as an elective subject, but as a mandatory topic. There 
is no question anymore about the importance of CSEd, its 
place and need in public education, but there are differing 
opinions on why and how it should be done. Among the 
most prominent rationales for increasing access to CSEd is 
that it can serve as a foundational literacy upon which other 
knowledge/activities can be built, and as a powerful context 
for profound, authentic, and interdisciplinary learning in 
other subjects. CSEd can serve as an expressive, creative 
medium to allow young learners to express ideas in ways 
that are socially and culturally relevant, and also a valuable 
tool for civic and political participation.

Research has unearthed misconceptions to be 
addressed (Sorva, 2012), as well as effective pedagogies, 
classroom strategies, and language design principles 
to improve CSEd in K–8. For example, there’s need for 
the design of robust and developmentally appropriate 
programming tools for multiple age groups and domains 
(e.g., Lister, 2016). The instrumentation of those tools (in 
combination with other data sources) could also provide 
additional insights into student learning. There is, still, 
a growing awareness of the need for CSEd research 
to become more rigorous10 and to better connect with 
established knowledge bases in education and the 
learning sciences, as well as with emerging methodologies 
such as machine learning. These new mixed-methods 
research approaches and data sources can help CSEd 
implementation by creating tools and dashboards to help 
teachers with classroom activities such as managing 
and assessing complex project-based work and creating 
infrastructures for data-sharing among researchers. 

Given the importance of CSEd, many of the 
interviewees believe that national rollouts of robust CSEd 

programs will require massive investment in the creation of 
state-level standards and curriculum, teacher preparation 
and	certification,	software/hardware	infrastructure,	and	
research. It is not clear if all stakeholders are aware of 
the depth of the effort, but many feel that partial rollouts 
have the potential to increase social disparities and 
educational inequalities, privileging more affluent or well-
resourced schools and districts. Additionally, although 
large scale “CS exposure” programs are reaching millions 
of children, there is concern that they do not guarantee 
sustained engagement, in particular for underserved 
youth. Addressing these concerns requires better metrics, 
arms-length evaluation of programs, and more consensus 
on what constitutes success. In addition, exposure 
programs	could	benefit	from	follow-up	activities,	curricula,	
and	sufficient	resources	to	support	deeper	learning	and	
stronger outcomes. 

With an eye toward stronger outcomes, a reliance 
on high-quality standards, curricula, and assessments 
alone are not a guarantee of effective implementation. 
Education is always instantiated by teachers, so attention 
to pedagogy, teacher support, and the complex dynamics of 
adopting	new	curricula	is	crucial.	Specifically,	we	found	that	
teacher development is a key factor in the success of CSEd, 
both pre-service and in-service. And, the understanding of 
equity, inclusiveness, and unconscious biases about CS 
success are viewed as necessary to teacher development 
programs. If CSEd programs are not implemented with 
an eye towards equity, they risk deepening educational 
inequalities that already exist and defeating the purpose of 
CSEd as a force for youth empowerment and social justice. 

Overall, when considering the progress made to 
date, the state of the art of the research, and the growing 
demand for large-scale rollouts, instead of the adoption of 
one single implementation model, researchers advocate 
for a repertoire of well-studied and well-rationalized models 
that	are	sufficiently	flexible	to	be	adapted	to	multiple	
local contexts. To deal with these demands, the number 
of researchers and research programs in CSEd will need 
to grow dramatically. In doing so, there’s an expressed 
need	to	secure	significant	funding	pathways	to	ensure	the	
necessary research infrastructure is made available.

10 “Rigorous,”	in	this	context,	refers	to	high-quality	standards	within	all	research	
paradigms: qualitative, quantitative, data mining, etcetera, and not only steering 
research towards elements that can be quantitatively measured.
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11. Recommendations

Advancing CSEd in equitable ways requires a comprehensive  
approach that ensures all students are well prepared for the 
future. Building on the recent advances made in CSEd and 
the growing demand for more, the CSEd community should 
consider	pursuing	strategies	that	can	benefit	all	students,	
especially those who are underserved. We highlight 
recommendations	below	that	address	the	findings	of	 
this report. 

11.1 Create clarity around the different visions  
of CSEd
•  Create clarity and alignment around the core rationales 

that varied stakeholders use to advance CSEd 
(labor market, computational thinking, computational 
literacy, equity of participation), so that the solutions 
implemented build upon the similarities, compatibility, 
complementarity, and differences between them.

•  As CSEd grows, it should maintain some of its key 
transformational and innovative elements. Such 
elements include the focus on project-based learning 
approaches, alignment with learner interests, culture, 
and ways of expression, exploration of new content 
areas, collaborative work, and openness to multiple 
ways of doing CS (epistemological pluralism).

11.2 Make participation equitable 
•  National rollouts of CSEd must prioritize and evaluate 

their impact on improving the equitable participation 
of all students regardless of backgrounds, 
motivations, preparations, and abilities. The demand 
for computing skills is growing rapidly not only for 
economic reasons but in all aspects of children’s lives. 
Preparing all students for the future requires institutions 
and mechanisms that shape and support CSEd to 
develop plans and to assess how effective they are  
in providing learning opportunities for all students. 

•  CSEd should be mandatory content in public 
schools in order to overcome biases and structural 
inequalities that prevent equitable participation. As 
long as CSEd continues to be viewed as an elective 

or specialty subject, concerns will persist about 
the unequal presence of CS in public schools, the 
quality of instruction, and educators’ and counselors’ 
unconscious bias regarding who is “suited” to take  
CS classes.

11.3 Ensure teachers are prepared and 
supported
•  Develop integrated systems of teacher certification, 

training programs, and professional incentives, 
with special attention to the pre-service pipeline. 
The interactions between teachers and students 
in classrooms are a determining factor in whether 
students learn CS successfully. Teachers are the 
linchpin in any effort to implement and change CSEd 
and so the preparation, effective development, and 
retention of CSEd teachers need to be prioritized. 

•  Provide high-quality teacher preparation and induction 
models focused on inclusive CS pedagogical content 
knowledge. In addition to exposing teachers to CS 
content, teacher preparation programs must also 
provide teachers with time to learn and practice 
inclusive CS pedagogies. These pedagogies need to be 
interwoven into the entire PD program.

11.4 Create continuity and coherence around 
learning progressions
•  Describe recommended sequences for CS knowledge 

and skills that can build on one another as students 
learn new topics over time. With clear connections 
between what comes before and after a particular point 
in the learning progression, teachers can scaffold any 
missing knowledge or skills and determine the next 
steps to move the student forward.

•  Develop robust and developmentally-appropriate 
programming tools for multiple age groups, especially 
for K–8, and domains that also provide additional 
insights into student learning. We should develop new 
programming tools and dashboards that can also help 
teachers with classroom activities such as managing 
and assessing complex project-based work, as well as 
infrastructures for research data sharing.
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11.5 Commit to ongoing and thorough research
•  CSEd research funders, researchers, practitioners 

and policymakers should develop a strategic plan 
for CSEd research. The plan should provide a long-
term achievable, innovative, and actionable research 
agenda	to	address	critical	challenges	identified	in	this	
report. To sustain this strategy, there must be a shared 
commitment among stakeholders to make CSEd 
research an integrated, stable, academically valued  
and well-funded enterprise for years to come.

12. Conclusion

In sum, the time is ripe for thoughtfully targeted and 
comprehensive action to advance the CSEd community.  
A large and diverse body of perspectives indicates that we 
must address the social, economic, and cultural barriers 
surrounding computing. If access and inclusiveness are 
addressed effectively, we can meet current and future 
workforce and citizenship demands. And we can do so in 
ways that equitably drive technological and social progress 
and give youth new avenues for personal expression and 
empowerment. This effort requires the cooperation and 
coordination of interdisciplinary, inter-sector teams that 
thoughtfully design, implement, evaluate, and learn from 
CSEd initiatives. Only in this way can we achieve the hoped-
for scale and sustainability, and realize the ultimate vision of 
generations of researchers, practitioners, and policy makers 
that have been trying, for the last 50 years, to bring CS to  
all students.
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Appendix A: Methods

We utilized three main data sources for this report: interviews,  
literature reviews, and analysis of papers recommended 
by the interviewees. For the interviews, we selected 
leaders	in	the	field	from	various	universities,	institutions,	
and organizations, trying to balance intellectual traditions, 
academic	backgrounds,	and	expertise.	The	final	group	of	
interviewees consisted of 14 practitioners, researchers, and 
scholars shown below.

Matthew Berland University of Wisconsin-Madison
Leah Buechley Rural Digital
Michael Clancy University of California, Berkeley
Andrea “Andy” diSessa University of California, Berkeley
Sally Fincher University of Kent
Shuchi Grover Formerly SRI International
Mark Guzdial Georgia Institute of Technology
Mike Horn Northwestern University
Jane Margolis University of California, 
 Los Angeles
Mitchel Resnick Massachusetts Institute of  
 Technology
Sue Sentance King’s College, London
Ben Shapiro University of Colorado, Boulder
David Weintrop University of Maryland
Pat Yongpradit Code.org

All invited interviewees accepted to be interviewed, 
except one professor who nominated another scholar in his 
own department (Michael Clancy, University of California, 
Berkeley), and Andrea diSessa, who preferred to send an  
in-preparation paper instead (the paper is used in this report 
in lieu of an interview, and listed in the Works Cited).

We used a semi-structured protocol for the interviews 
which included questions about the relevance and 
importance	of	teaching	CS,	the	main	research	findings	
in	the	field,	and	research,	policy,	and	implementation	
agendas for the next year (see Appendix B for interview 
protocols). The interviews were conducted remotely via 
videoconference, audio recorded, transcribed in their 
entirety, and analyzed by the author of this report. All 
participants were given the option of anonymity and none 
opted for it.

Principal themes were extracted from the initial 
coding: (a) teacher preparation; (b) policy and scale up; 
(c) curriculum development; (d) cultural, diversity, and 
equity issues; (e) pedagogy; and (f) history of CSEd. These 
categories	informed	a	further	refining	of	the	coding,	so	the	
data	was	recoded	for	more	fine-grained	topics,	resulting	
in approximately 1,000 excerpts grouped into 130 codes. 
Those codes were then re-categorized in terms of the six 
initial themes and informed the structure of the document.

The literature was selected using a combination of 
recommendations from the interviewees, well-established 
policy documents such as the CSTA K–12 Computer 
Science Standards (Seehorn et al., 2011) and the K–12 
Computer Science Framework (K–12 Computer Science 
Framework Steering Committee, 2016), foundational 
works	in	the	field,	and	existing	literature	reviews.	We	used	
the literature to add a layer of peer-reviewed research to 
the topics extracted from the interviews, and triangulated 
research	findings	across	interviews	and	the	literature.

We chose this hybrid format (interviews and reviews) 
to simultaneously capture well-established facts and 
findings	but	also	novel	information	that	has	not	yet	made	
it	to	the	publication	venues	in	the	field.	Also,	some	of	the	
important challenges and issues in CSEd often do not show 
up in peer-reviewed publications because many active 
members of the community are tool developers instead 
of researchers—so their work would not be necessarily 
captured in a traditional literature review. This combined use 
of interviews and literature gave us a more comprehensive 
view	of	the	state	of	the	very	young	and	dynamic	field	of	CSEd.
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Appendix B: Interview Protocols

Long interview protocol
First part: History
1. CSEd has seen a resurgence in the last 5 or 10 years 

after a decade of relative silence. Is that an accurate 
portrait, and what is your version of the history of 
CSEd? What was your participation in this history?

2. There are several reasons for teaching CS in K–8. Some 
people say that it is a marketable job skill, some say 
it is a general thinking skill (computational thinking), 
and some others say that it is a broader literacy 
(computational literacy) just like reading and writing, 
which you could use to learn all subjects. What should 
be the reasons for us to teach CS in K–8?

Second part: State of the art
3. What is the state of K–8 CSEd? What have we achieved 

in this area in terms of scale, depth, mindshare, and 
research? Do you know of a particularly powerful 
experience in CS education at the K–8 level?

4. What is the typical experience of a K–8 student today 
regarding CS? What type of contact do they have 
with programming? How is that experience on the 
high-end and low-end of the educational spectrum? 
In other words, how does it look like for a student in a 
high-achieving institution, versus an average or low-
achieving public school? 

5. In terms of research in CSEd, in your opinion, what are 
the	most	well-established	facts	and	findings	about	
how K–8 students learn to program? Are there some 
undisputable	findings	about	that,	or	at	least	the	closest	
candidates?	What	are	some	counterintuitive	findings	in	
your own work and in work elsewhere about this?

6.	 Getting	more	specific:	Which	concepts	are	most	
problematic for students and at what age do 
these	difficulties	begin?	Are	you	aware	of	specific	
pedagogical approaches or supports that successfully 
mitigate	these	difficulties?

7. In schools, what are the most effective ways to teach 
CS concepts to a broadly diverse student audience?

8. Compared to mathematics education and/or science 
education, where are we with CSEd in terms of 
understanding the nature of CS learning?

9. What are the seminal studies from the past 10 years 
that examine how and when students best learn 
computer science? What is on your list of must-read 
papers (includes reviews) for someone who wants to 
get informed about this topic?

Third part: Future
10. What do you see as the top three most important CSEd 

research	topics	in	five	years?	In	15	years?
11. What are the three most important challenges for the 

research	community	in	CSEd	in	the	next	five	years?	
What are the most important studies we need to do, the 
tools we need to develop, and/or the most important 
learning questions we need to answer?

12. What are the most important policy challenges for the 
next	five	years	in	CSEd?

13. How would you like to see CSEd in 15 years?

Short interview protocol
1. What should be the main reasons to teach CS in K–8, 

and why?
2. In your opinion, what are the most well-established 

facts	and	findings	about	how	K–8	students	learn	to	
program, or at least closest candidates? This can be in 
terms of the social engineering of classrooms or group/
pair work while learning to code, design principles for 
programming environments, concepts that are easier or 
harder, etcetera. 

3.	 Getting	more	specific	(if	you	have	this	information):	
From your own work or from elsewhere, which 
concepts are most problematic for students and at 
what	age	do	these	difficulties	begin?	Are	you	aware	of	
specific	pedagogical	approaches,	tools,	or	supports	
that	successfully	mitigate	these	difficulties?

4. What are the three most important challenges for the 
research	community	in	CSEd	for	the	next	five	years?	
These challenges could be in terms of important 
studies we need to do, the tools we need to develop, 
policy initiatives, and/or the most important learning 
questions we need to answer?

5. What is on your list of must-read papers (includes 
reviews) for someone who wants to get informed about 
this topic?
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2000s

1990s

1980s

1970s

1960s

Appendix C: CS Education Timeline

1961 Alan Perlis delivers lecture at the “Computers and the World of the Future” Symposium at  
Massachusetts Institute of Technology (MIT), stating that “everyone should learn to program as  
part of a liberal education.”

1964 John Kemeny and Thomas Kurtz (Dartmouth College) create the BASIC programming language.

1967 LOGO computer language created by Seymour Papert, Cynthia Solomon, and Wally Feurzeig.

2001 First Multi Institutional, Multi National of Assessment of Programming Skills of First-Year CS Students 
(MIMN) study in CSEd, led by Mike McCracken. 

2001 “Changing Minds: Computers, Learning, and Literacy” by Andrea diSessa introduces the idea of  
“computational literacy.’”

2002 “Unlocking the Clubhouse: Women in Computing” by Allan Fisher and Jane Margolis addresses 
gender	and	computing.	MIT	Media	Lab	releases	the	GoGo	Board,	the	first	open-source	platform	for	
robotics, designed expressly for developing nations.

2003 ACM Task force for K–12 Computer Science Education formed and publishes “A Model Curriculum 
for K–12 Computer Science Education.” 

Early '90s Reversal in federal funding, research in CSEd slows down in the U.S.

1991	 Launch	of	StarLogo,	the	first	massively	parallel	programming	language	for	non-experts.

1993 Launch of new programming environments: NetLogo (Uri Wilensky), AgentSheets (Alex Reppening), 
LogoBlocks (MIT Media Lab), Alice (Randy Pausch), E-toys (Alan Kay). 

1995	 MIT	Media	Lab	releases	the	Cricket,	the	first	full	platform	for	robotics	expressly	designed	for	children.

1996	 “Computational	thinking”	is	first	introduced	by	Seymour	Papert.	

1998 Launch of LEGO Mindstorms robotics kit.

1980 “Mindstorms” published by Seymour Papert. Robert Taylor publishes “The Computer in the School: 
Tutor, Tool, Tutee.”

1981 Turtle Geometry published by Hal Abelson and Andrea diSessa. Bank Street LOGO project starts led 
by Roy Pea and Midian Kurland. Soon after, Marcia Linn and Michael Clancy (University of California, 
Berkeley)	join	the	first	National	Institute	of	Education	study	on	programming.	Richard	Pattis	creates	
the Karel the Robot programming language.

1984 Introduction of the AP Computer Science A Exam with almost 7,000 students.

1985 MIT-led LOGO experiment at the Hennigan Elementary School in Boston commences. MIT Media  
Lab created, Papert’s efforts expand through his Epistemology & Learning group, “constructionism” 
term coined.

1988 The LEGO Company launches LEGO/LOGO.

1977 Adele Goldberg and Alan Kay publish “Personal Dynamic Media,” inspiring the development concept 
of the Dynabook and the development of SmallTalk.
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2010s 2010	 Computing	in	the	Core	initiated	by	ACM/CSTA/Microsoft/Google/NCWIT,	one	of	the	first	major	 
advocacy efforts for CSEd.

2013 Code.org launches Hour of Code. CSEd organizations explode: Codecademy, CodeHS, Tynker,  
Treehouse, Khan Academy, Iridescent Learning, GirlsWhoCode, Black Girls Code.

2013 CS4All program launches in Chicago public schools. 

2014	 President	Barack	Obama	becomes	the	first	U.S.	president	to	write	a	line	of	code	and	announces	
federal support for CS4All.

2015	 Hour	of	Code	reaches	100	million	“hours	served”;	Arkansas	becomes	first	state	to	require	all	public	
and	charter	high	schools	to	offer	CS;	CS	in	San	Francisco	Unified	School	District;	CS	in	New	York	 
City schools.

2016 Countrywide initiatives for teaching CS to all children in the U.K. (Computing in Schools Project), in 
the U.S., as well as Denmark, Finland, and other countries.

2017 White House announcement to expand access to STEM and CSEd. NSF and College Board partner 
to design a new and innovative Advanced Placement CS course, “Computer Science Principles.”

2004 Computer Science Teachers Association (CSTA) created, takes on creating the CSTA K–12 Computer 
Science Standards. 

2004 Second Multi Institutional, Multi National (MIMN) of Reading and Tracing Skills in Novice Programmers,  
led by Raymond Lister.

2005 Bootstrap and the scaffolding research projects start. International Computing Education Conference 
(ICER) conference starts. National Science Foundation (NSF) forms the Broadening Participation in 
Computing research program. Release of the Arduino platform, which rapidly becomes the standard 
for physical computing.

2006 The term “computational thinking” appears in an influential paper by Jeanette Wing, as she begins 
her tenure at the NSF. First Maker Faire in the San Francisco Bay Area.

2007 Scratch programming environment is launched by the Lifelong Kindergarten group at MIT.

2008 CS10K effort is launched and funded by NSF. Jane Margolis publishes “Stuck in the Shallow End:  
Education, Race, and Computing.” Margolis and her team, including Joanna Goode and Gail  
Chapman, launch Exploring Computer Science (ECS) in Los Angeles, addressing issues of race  
and underrepresentation in CS.

2009 Launch of CSEd Week by ACM and CSTA.
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